
HTML5APPS

DELIVERABLE D1.1

STANDARDIZATION REPORT

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 1 of 298

Project

Grant Agreement number 317862

Project acronym: HTML5Apps

Project title: HTML5Apps: Closing the Gaps

Funding Scheme: Coordination & Support Action

Date of latest version of Annex I
against which the assessment will
be made:

May 24, 2013

Document

Deliverable number: D1.1

Deliverable title Standardization report

Contractual Date of Delivery M12

Actual Data of Delivery: M12

Editor(s): Dr. Dave Raggett

Author(s):

Reviewer(s):

Partipant(s):

Work package no.: 1

Work package title: WebOS APIs

Work package leader: Dr. Dave Raggett

Distribution: PU

Version/Revision:

Draft/Final: Final

Total number of pages (including
cover): 298

Keywords:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 2 of 298

DISCLAIMER

This document contains description of the HTML5Apps project work and
findings. The authors of this document have taken any available measure in
order for its content to be accurate, consistent and lawful. However, neither
the project consortium as a whole nor the individual partners that implicitly
or explicitly participated in the creation and publication of this document hold
any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union.
The content of this publication is the sole responsibility of the HTML5Apps
consortium and can in no way be taken to reflect the views of the European
Union.

The European Union is established
in accordance with the Treaty on
European Union (Maastricht). There
are currently 27 Member States of
the Union. It is based on the
European Communities and the
member states cooperation in the
fields of Common Foreign and
Security Policy and Justice and
Home Affairs. The five main
institutions of the European Union
are the European Parliament, the
Council of Ministers, the European
Commission, the Court of Justice
and the Court of Auditors.
(http://europa.eu/index_en.html)

HTML5Apps is a project funded in part by the European Union.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 3 of 298

http://europa.eu/index_en.html

TABLE OF CONTENTS

1. Introduction . 5
2. Execution and Security Models . 7

2.1. Status of Work. 7
2.2. Trust and Permissions. 8

2.2.1. White Paper . 8
2.2.2. Paris Meeting. 9

3. Application Programming Interfaces (APIs). 13
3.1. Alarm API/Task Scheduler API . 13
3.2. Contacts API . 13
3.3. Messaging API . 13
3.4. Telephony API . 13
3.5. Raw Socket API/TCP UDP Sockets API. 14
3.6. Bluetooth API . 14
3.7. Secure elements API . 14

4. Planning Future Work . 15
5. Conclusions . 17

APPENDICES
A. Whitepaper: Handling Trust and Permissions in Web Applications. . 19
B. Minutes from meeting on trust and permissions for Web applications65
C. Manifest for web apps and bookmarks . 89
D. The app: URL Scheme . 107
E. Application Lifecycle and Events . 112
F. Task Scheduler API . 122
G. Contacts Manager API . 130
H. Messaging API . 142
I. Telephony API . 177
J. TCP and UDP Socket API . 210
K. Web Bluetooth . 237
L. Secure Element API . 280

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 4 of 298

1. INTRODUCTION

This report describes the HTML5Apps project's achievements in in terms of
standardizing WebOS APIs (including standardization documents).

At the outset of the HTML5Apps project, HTML5 standards were designed
to cope with the user visiting untrusted web sites, necessitating a cautious
approach to security that narrowly limited what a particular website can do
(limited access to OS, network, and browser data through browser sandbox,
avoid fingerprinting of users etc.). This limited the type of apps that could be
written using HTML5.

It was assumed that closing the gap between HTML5 apps and native apps
would require defining a runtime environment, security model, and associated
APIs for building Web applications with comparable capabilities to native
applications. This means stronger integration with the host platform than is
the case for traditional web pages.

Today’s Web operating systems such as Tizen and FirefoxOS typically include
the following components for which no standardized solution exists today:

• Execution Model: A description of the execution model and associated
APIs for HTML5 applications, that differs from the traditional browser-
based execution model.

• Security Model: A description of the security model and associated APIs
for HTML5 applications that differs from the traditional browser-based
security model.

Moreover, Web operating systems include a number of APIs which are also not
standardized:

• Alarm API: An API to manage the system's alarm daemon.
• Contacts API: An API that enables complete management of the device's

address books.
• Messaging API: An API to send and receive messages (e.g. SMS, MMS,

Email, and IM) as well as manage messages stored on the device.
• Telephony API: An API to interact with the phone system, for instance to

dial a number, pick up a call, route to voicemail, access the call log, etc.
• Raw Sockets API: An API to manipulate low-level connections (e.g. TCP,

UDP), including the ability to listen for incoming connections.
• Bluetooth API: A low-level API to interact with the Bluetooth hardware

available on some devices.
• Browser API: An API that provides all the necessary items to build a Web

browser that aren't otherwise available. Most notably, this provides all
that is needed in order to safely instantiate a viewport onto the open
Web, pretend that such a viewport is the top level window even if the
browser's chrome is itself written using Web technology, etc..

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 5 of 298

• Calendar API: An API that enables complete management of the device's
calendars.

• Device Capabilities API: An API that exposes the capabilities available to
the device.

• Idle API: An API to be notified when the user is idle.
• Media Storage API: An API to manage the device's storage of specific

content types (e.g. pictures).
• Network Interface API: An API to manipulate network interfaces

(mobile, WiFi, etc.), such as listing available networks, current strength,
etc., as well as configuring and enabling them. Potential uses include
offloading connections from mobile networks to WiFi, enabling high
priority mobile data connections and control of other network features.

• Secure Elements API: An API enabling the discovery, introspection, and
interaction with hardware tokens (Secure Elements) that offer secure
services such as tamperproof storage, cryptographic operations, etc.

• System Settings API: An API to manage the system's settings (e.g. time/
clock settings, and personal preferences including privacy preferences).

For HTML5 apps to realize their full potential as non-proprietary, open
alternative to today’s native app environments, further functionality needs to
be added to the relevant standards.

In order to develop these standards, members of the HTML5Apps project
team are filling in the role of so-called “W3C team contacts” in relevant W3C
standardization Working Groups. A W3C team contact acts as the interface
between the Group Chair (“Chair”), Group Members, and the W3C Team. Many
of the team contact’s tasks involve helping the Chair complete his or her roles,
while others involve direct action from the Contact. The team contact role is
largely one of communication. This involves becoming as aware as possible of
the technical requirements and issues in the group, and simultaneously being
aware of the general architecture of the Web as evolving in the other work of
W3C. In particular, the work of team contacts include the following tasks:

• Assist Group organizers in maintaining charter and convening Group
• Monitor group participation and operations
• Monitor levels of active participation and address as needed.
• Serve as Contact between WG and rest of the W3C Team (team contacts

of other groups, marketing, management etc.)

This report is structured as follows: In Section 2, we report on the status
of work on the execution and security model, with particular focus on the
work on permissioning. In Section 3, we report on the status of work on
individual APIs. In Section 4, we give an overview of future work planning.
Section 5 concludes this report. Appendices provide background materials and
standardization documents.

Please note that this document includes hypertext links to background
materials including draft specifications. This can be followed when viewing the
electronic version of this document.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 6 of 298

2. EXECUTION AND SECURITY MODELS

2.1. STATUS OF WORK

Work started with submissions from working group participants in the W3C
Systems Applications (SysApps) WG:

Execution Model
A description of the execution model and associated APIs for system
applications, particularly how the execution model differs from the
traditional browser-based execution model. Example: Strawman proposal
from Google.

Security Model
A description of the security model and associated APIs for system
applications, particularly how the security model differs from the
traditional browser-based security model. Examples and further
background:

• Strawman proposal from Google,
• B2G Security Model,
• W3C Workshop in 2008 on Security for Access to Device APIs from

the Web,
• The WAC core security specifications
• The BONDI App Security Framework
• Chrome extensions security model and permissions
• The webinos security model
• The Widgets security model landscape analysis from 2008
• The security controls introduced by 'Gibraltar'

These contributions were reworked by editors from Mozilla and Samsung into
a draft specification.

• Runtime and Security Model for Web Applications

The draft described:

• How an application is defined through an application manifest and how
it can be installed, updated and packaged.

• The eventing model to handle the different stages of the "app lifecycle"
(launching, pausing, resuming, terminating).

• The offline execution model.
• Permission and security model for system APIs/capabilities that should

only be granted for suitably trusted applications.

In Autumn 2013, the working group decided to split the initial proposal into
several separate work items, and to proceed on them separately:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 7 of 298

http://abarth.github.com/sysapps/drafts/runtime.html
http://abarth.github.com/sysapps/drafts/runtime.html
http://abarth.github.com/sysapps/drafts/security.html
https://wiki.mozilla.org/Apps/Security
http://www.w3.org/2008/security-ws/agenda.html
http://www.w3.org/2008/security-ws/agenda.html
http://specs.wacapps.net/core/#security-and-privacy
http://www.omtp.org/OMTP_Application_Security_Framework_v2_2.pdf
http://code.google.com/chrome/extensions/trunk/apps/app_architecture.html
http://code.google.com/chrome/extensions/permission_warnings.html
http://dev.webinos.org/deliverables/wp3/d35.html
http://www.w3.org/TR/widgets-land/#security
https://docs.google.com/document/d/175vNhHLPdjYb7iwRBlLmSa3SsSIATpYZ7kpFyy-eYI0
http://www.w3.org/TR/2013/WD-runtime-20130321/

• The specification of a JSON based manifest format (edited by Intel and
Mozilla. The application manifest is used to attach metadata, application
icons, and can be used to describe the set of system level capabilities
that the application requires. See Appendix C

• The App URI specification (edited by Mozilla) defines a URI scheme for
use by HTML5 applications to obtain resources packaged as part of the
application, e.g. image resources referenced by an IMG element. This
specfication reached last call in May 2014. See Appendix D

• The App Lifecycle specification (edited by Intel) provides APIs for
managing the lifecycle of an application and associated events. The
App Lifecycle specification allows apps to respond to changes in the
application lifecycle (e.g. launch and terminate events), to handle events
sent by the system (e.g. push notifications), and to handle scheduled
wakeup calls. See Appendix E.

• Permissioning: HTML5Apps staff created a whitepaper analyzing
existing approaches and organized a special meeting on Trust and
Permissions in September 2014.

2.2. TRUST AND PERMISSIONS

In order to help the Working Group move to a shared position that maximizes
interoperability of trusted web applications, the HTML5Apps staff:

• created a whitepaper analyzing existing approaches (see Appendix A),
• organized a special meeting on Trust and Permissions (see Appendix B).

W3C has already taken some steps with specifications like the Geolocation API
that require user consent. Others are underway, e.g. for media capture and
switching to full screen mode. The question is how to proceed towards a more
comprehensive approach to trust and permissions for the Open Web Platform.

2.2.1. White Paper

HTML5Apps staff started a survey on permission handling in existing Web and
native application platforms as preparation for a cross working group meeting
on trust and permissions in the Open Web Platform.

• Whitepaper: Handling Trust and Permissions in Web Applications, Dave
Raggett, April-July 2014, see Appendix A

The paper looks at Google's Android, Apple's iOS, Microsoft Windows Runtime
and Windows Phone, Blackberry 10 Native Apps, PhoneGap/Apache Cordova,
Adobe AIR, Google Chrome Apps, Mozilla's Firefox OS, Ubuntu Web Apps,
Nokia's Cloudberry, Tizen, and the W3C Open Web Platform. Further work is
anticipated for automotive and TV based platforms. This paper is based upon
publicly available information, and has varying levels of detail according to
what information could be found. The paper also includes the email discussion
on the SysApps WG list on permissions UI and necessary API. The paper
concludes with some questions for further study.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 8 of 298

http://www.w3.org/TR/appmanifest/
http://www.w3.org/TR/app-uri/
http://www.w3.org/2012/sysapps/app-lifecycle/
whitepaper
minutes
http://www.w3.org/2014/05/wp-trust-permissions/

2.2.2. Paris Meeting

The HTML5Apps project organized a two day meeting on trust and permissions
in Paris, France on 3-4 September 2014, hosted by Gemalto. The Minutes were
made available to the public (see Appendix B).

The meeting includes a broad representation of browser vendors and other
organizations:

• Dave Raggett, W3C
• Dominique Hazaël-Massieux, W3C (remote)
• Robin Berjon, W3C (webapps etc.)
• Wendy Seltzer, W3C (security, privacy) 2nd day only
• Stefan Håkansson, Ericsson (Co-chair Media Capture TF, WebRTC)
• Philipp Hoschka, W3C
• Giridhar Mandyam, Qualcomm
• Claes Nilsson, Sony Mobile
• Wonsuk Lee, Samsung
• Vadim Draluk, GM (automotive)
• Adrienne Porter Felt, Google
• Jonghong (Jonathan) Jeon, ETRI
• Steven Woolcock, Apple
• John Hazen, Microsoft
• Stephanie Ouillon, Mozilla
• Kenneth Rohde Christiansen, Intel
• Olivier Potonniee, Gemalto
• Anssi Kostiainen, Intel (remote)
• Virginie Galindo, Gemalto (remote)

Credits to Johnathon Jeon.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 9 of 298

http://www.w3.org/2014/07/permissions/
http://www.w3.org/2014/07/permissions/minutes.html

We started with a short history of the SysApps Working Group. This group set
out to standardize around 15 APIs for use in packaged and hosted apps.

We then reviewed the approaches taken to date by the Open Web Platform
(OWP), iOS, Android, Windows Phone, Chrome Apps, Firefox OS and General
Motor's approach for their automotive apps.

For geolocation the current HTML5 standard requires user consent at the
time of use. By contrast, the Full Screen API asks for consent after entering
into full screen mode. The user can decline, forcing the browser back to the
regular window mode. The aim here is to combat phishing attacks.

Apple's iOS likewise takes the time of use approach. The context in which the
prompts occur make it easier for users to understand what the prompts are
for as compared to asking for permissions at install time. Steven Woolcock
said that in some cases it would be desirable to ask for permissions prior
to use. One example is where parents want to control what permissions are
appropriate for apps used by their children.

Adrienne Felt summarised how permissions are used in Android. There are
something like 150 permissions available. The ones that developers think they
will need have to be declared in the application manifest and users have to
give their consent as a precondition for installing an app. A few permissions
are only available to applications certified by Google. Dom gave the API for
bricking a stolen phone as an example. Adrienne cited a study that showed
that for the most part developers only request the permissions that their app
actually needs. Users think more about what apps would do with their data,
and not about the full range of possibilities that the permissions enable. It
was noted that the Android permission model trains users to click through the
consent dialogue in order to try out the newly installed app. In many ways
users would prefer to know whether the app is trustworthy or not and not have
to see the legalese of the permissions dialogue.

For Windows Phone, John Hazen (Microsoft) reported that Microsoft have
chosen to minimize the total number of permissions available to developers
and end users, ending up with around 12 coarse grained permissions. They
have explicit prompts only where API would expose something about the user
in real-time. Microsoft has a review process to weed out malware and can
revoke apps when mis-behaving apps have been released to the wild. For
enterprise apps, it is the network adminstrators who determine where apps
have permission to access corporate resources.

Stéphanie Ouillon (Mozilla) presented the Firefox OS Permission Model which
currently applies only to packaged apps. These are apps where the complete
set of files have been zipped together for local installation on the phone or
tablet. There are three levels: regular web apps, privileged permissions for
apps signed by the Mozilla marketplace, and certified permissions which are
only available to apps from Mozilla and its business partners. Firefox OS
prompts users for consent at the time of use, but only for those permissions

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 10 of 298

that users can be expected to understand. Claes Nilsson described work by
Sony on extending the Firefox OS permissions model to hosted apps, based
upon the manifest and digital signatures with a white list of trusted signatory
parties.

Stefan Håkansson (Ericsson) talked about work at Ericsson on an extension
of W3C Web Workers as a basis for accessing privileged APIs. The web
application uses a simple JavaScript wrapper to invoke the API exposed by the
trusted script of the Provider Worker via the HTML5 postMessage mechanism.
One benefit is the ability to replace several lower level browser consent
prompts with a single higher level and more pertinent prompt.

We then reviewed lessons from academic studies. Adrienne presented the
following diagram from her dissertation (Towards Comprehensible and
Effective Permission Systems)as a basis for matching the permission
mechanism to the context:

We looked at Roesner et al.'s work on trusted UI where user actions on trusted
UI controls invoke privileged APIs. The browser ensures that the controls
are only active when unobscured by anything else, and that app generated
UI events are ignored, so that only genuine user interaction can invoke the
control. Standardization of this approach requires a thorough understanding
of the use cases.

In a discussion of considerations for permission handling, we agreed that
listing permissions in the app manifest together with explanations on what
they are needed for is useful for reviewers even if it isn't shown to end users.
Moreover, if as an end user you trust the review process, then you don't need to
be asked for consent for individual permissions. Trust could be on the basis of
an app store's review process, a well known brand, or endorsement by trusted
third parties. The review process is also relevant to privacy. End users find
website privacy policies hard to understand, so this is something where trust
delegation could be applied.

Whilst browser vendors are free to innovate around trust, developers will want
standard ways to manage endorsements, especially for hosted web apps. An
example of browser innovation, is the ability for a browser to flag suspicious

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 11 of 298

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-185.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-185.pdf
http://research.microsoft.com/pubs/152495/user-driven-access-control-nov2011.pdf

apps for review based upon the pattern of APIs the app uses. This is a
promising approach for detecting apps that are fingerprinting devices.
Browsers could also help with embedded apps, e.g. where an app is funded
through the advertisements that it embeds. Users may trust the app with
personal details, but not want to disclose these to the companies providing the
ads.

The meeting concluded with discussion on areas where there is good
agreement, and areas where there is still some way to go to bring companies to
a rough consensus. One work item is a proposal from Google for a permission
testing API. This could be taken up by either the Web Apps or Device APIs
Working Groups. Several of the participants were in favour of launching a W3C
Community Group to work on best practices with a view to ensuring consistent
approaches to API design across W3C Working Groups. This CG would review
existing practices and also look at new approaches such as trusted UI. We
agreed that whilst we would focus on hosted apps for the Open Web Platform,
we shouldn't rule out the re-use of standards for packaged apps. Dave Raggett
(W3C/HTML5Apps) took an action to organize a break-out session on trust and
permissions in the OWP at the late October TPAC meeting in Santa Clara.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 12 of 298

3. APPLICATION PROGRAMMING INTERFACES
(APIS)

This section gives an overview of the standardization status of the APIs
standardized within the HTML5Apps project.

3.0.1. Alarm API/Task Scheduler API

The purpose of the alarm API is to manage the system's alarm daemon.

In the reporting period, the Alarm API was renamed as the Task Scheduler
API (edited by Samsung) as a more accurate name given the decision to avoid
using Calendar time for scheduled tasks and the complications of dealing with
time zones, especially for travellers flying across zones. It was felt that a
full featured clock and alarms application could be built on top of the task
scheduler API and the JavaScript Date object. See Appendix D.

3.0.1. Contacts API

An API that enables complete management of the device's address books.

In the reporting period, as discussion proceeded, it became clear that it would
be beneficial to refactor the Contacts Manager API to enable the use of a data
store that is shared across multiple applications. The advantage of doing so is
to enable flexible data query mechanisms that can evolve separately from the
underlying data store API. Christophe Dumez (Samsung) contributed a draft
Contacts Manager API (edited by Samsung and Telefonica) layered on top of
the Data Store API designed by Gene Lian (Mozilla).

In the reporting period, new editor's drafts were published for the Contacts
Manager API (edited by Samsung and Telefonica). See Appendix E.

3.0.1. Messaging API

An API to send and receive messages (e.g. SMS, MMS, Email, and IM) as well
as manage messages stored on the device.

In the reporting period, a new editor's draft of the Messaging API (edited by
Intel and Telefonica) was published. See Appendix F.

3.0.1. Telephony API

An API to interact with the phone system, for instance to dial a number, pick
up a call, route to voicemail, access the call log, etc.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 13 of 298

http://www.w3.org/TR/2013/WD-web-alarms-20130205/
http://www.w3.org/TR/2013/WD-web-alarms-20130205/
http://www.w3.org/2012/sysapps/contacts-manager-api/
http://cdumez.github.io/contacts-manager-api/
http://cdumez.github.io/contacts-manager-api/
http://airpingu.github.io/data-store-api/
http://www.w3.org/2012/sysapps/messaging/

In the reporting period, a new editor's draft of the Telephony API (edited by
Mozilla, Intel, Telefonica and the University of Oxford) was published. See
Appendix G.

3.0.1. Raw Socket API/TCP UDP Sockets API

An API to manipulate low-level connections (e.g. TCP, UDP), including the
ability to listen for incoming connections. In the reporting period, the Raw
Socket API was renamed to TCP UDP Sockets (edited by Sony Mobile) to make
its scope more self evident.

In the reporting period, a new editor's draft of the TCP UDP Sockets API
(edited by Sony Mobile) was published. See Appendix H.

3.0.1. Bluetooth API

A low-level API to interact with the Bluetooth hardware available on some
devices.

Bluetooth provides the means for wireless access to a wide range of devices,
including keyboards, pointing devices, headphones, speakers, microphones,
and so forth. Bluetooth 4.0 introduced support for low energy devices with
constrained communication capabilities for very long battery life.

In the reporting period, a W3C Bluetooth Community Group was set up by
Google as a precursor to standardizing an API for Bluetooth Low Energy for
web applications. A document describing Use Cases and a draft specification
are available (both edited by Google). See Appendix I.

3.0.1. Secure elements API

An API enabling the discovery, introspection, and interaction with hardware
tokens (Secure Elements) that offer secure services such as tamperproof
storage, cryptographic operations, etc. In the reporting period, several drafts
of a Secure Element API specification (edited by Gemalto and Deutsche
Telekom) were published. See Appendix J.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 14 of 298

http://www.w3.org/2012/sysapps/telephony/
http://www.w3.org/2012/sysapps/tcp-udp-sockets/
http://www.w3.org/community/web-bluetooth/
http://webbluetoothcg.github.io/web-bluetooth/use-cases.html
https://webbluetoothcg.github.io/web-bluetooth/
http://opoto.github.io/secure-element/

4. PLANNING FUTURE WORK

In April 2014, the HTML5Apps team member serving as W3C Team Contact
for SysApps initiated a survey of the companies participating in the System
Applications Working Group in order to plan future work. The questions
included:

1. Which SysApps work items does your company expect to implement?
2. Which SysApps work items would your like to see widely supported?
3. Do you agree that apps must have addressable HTTP/HTTPS based

origins and be part of the Open Web?
4. Do you agree that web apps need access to more advanced capabilities

and features than they currently have? Please provide details for use
cases that are not currently addressed by the Open Web Platform.

5. Do you agree that the users of these apps must have control over the
capabilities these apps have, and that users can revoke these rights?

6. Do you agree that the current permissions models are broken and we
need to fix that?

7. Do you agree that a promising approach is to ask users for permission to
use capabilities in the context of use? In other words, for the web run-
time to ask the user when the application tries to invoke a system API,
e.g. to access raw TCP/UDP sockets.

8. Do you agree with the need for upfront user consent for permissions
when an app is installed or first run?

9. Do you agree that App Manifest is a one of the preconditions for apps to
gain access to richer capabilities than are normally available to apps on
the Open Web Platform?

10. Do you see a role for digital signatures as part of attestation for hosted
apps on the Open Web Platform?

11. Please use the text box below to very briefly describe your ideas for
future work items, along with your interest in implementing and
deploying devices with support for the results of these work items.

Questions 1-4 and 11 address which existing or new work items have sufficient
support to continue them in a new charter. The other questions were chosen to
shed light on how permissions could be added to the Open Web Platform.

There was strong support for each of the following:

• web apps need access to more advanced capabilities and features than
they currently have

• users should have control over the capabilities available to apps, along
with the means to revoke these rights

• asking the user for permission at the time of use is promising, although
not appropriate for all capabilities

• asking the user for consent up front when the app is "installed" or first
run is also of value

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 15 of 298

• app manifests should be one of the preconditions for apps to gain access
to richer capabilities

There was weak interest in the potential for digital signatures as part of
attestation for hosted apps on the Open Web Platform. We didn't get many
suggestions on ideas for future work other than for Bluetooth profiles support,
and for continued work on the trust/permissions model as an extension of
existing practice on the Open Web Platform.

Here are the numbers for which APIs people have plans to implement, and
which APIs people would like to see widely deployed. The third number is the
sum of the previous two and gives a broader feel for the level of interest:

App URI 4 5 9

TCP UDP Sockets 4 4 8

Task Scheduler 2 5 7

Bluetooth 3 4 7

Media Storage 3 4 7

Network Interface 4 3 7

App Lifecycle 3 3 6

Contacts 2 3 5

Data Store 2 2 4

Device Capabilities 2 2 4

Idle 2 2 4

Secure Elements 2 1 3

Calendar 1 1 2

System Settings 1 1 2

Messaging 1 - 1

Telephony 1 - 1

Based on these results, at the time of writing, there are ongoing discussions
on prioritization of work in the future, which may lead to a somewhat different
regrouping of work items into W3C standardization groups.

At the time of writing, the discussions about future work planning are still
ongoing.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 16 of 298

5. CONCLUSIONS

In the reporting period, the HTML5Apps project supported the publication
of draft standardization documents serving the project's objective to
“Standardize OS level APIs for HTML5 apps”.

In the area of a runtime and security model, progress was made on the
definition of a manifest format, an App URI specification and an App lifecycle
specification. There are active discussions around permissioning, supported
by HTML5apps with all key players involved and interested in collaboration
(Apple, Google, Microsoft and Mozilla in particular).

In the area of APIs, progress has been made on nine specfications: an Alarm
API/Task Scheduler API, a contacts API, a messaging API, a telephony API, a
raw Socket API/TCP UDP Sockets API, a Bluetooth API, a Secure elements API
and a Device Capabilities API.

In the next reporting period, we expect continued progress on the runtime
model, permissioning as well as on API specifications.

My thanks to my colleagues for their help in preparing this report.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 17 of 298

APPENDICES

This contains copies of published API specifications and further background
material relating to the goals of the Web OS APIs work.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 18 of 298

A. WHITEPAPER: HANDLING TRUST AND
PERMISSIONS IN WEB APPLICATIONS

This is a work in progress and incomplete, comments are welcome!

Dave Raggett, W3C
July 2014

This white paper surveys both Web and native application platforms for how
they approach the challenge of addressing trust, especially for capabilities
requiring elevated permissions. The motivation for this work is to prepare for
discussions on a road map for shared open standards for permissions for the
Open Web Platform, as developers demand richer capabilities comparable to
those available on native app platforms.

A.1. INTRODUCTION

The Open Web Platform is based upon open standards and is supported on
billions of devices. It is the only vendor neutral platform that spans such a
wide range of devices (e.g. desktop, smart phones, tablets, TVs and cars). For
developers seeking to reach a wide range of devices and operating systems, the
Web is the obvious choice. However, the success of the Web has encouraged
proprietary platform owners to support native applications and app stores. This
has been very successful on mobile devices, where developers have been able
to take advantage of vendor support for a comprehensive range of APIs. A
performance and capability gap has emerged between native and Web apps.
Hybrid approaches have emerged which allow developers to use standard web
technologies together with proprietary extensions, and then compile to the
native app platform.

Web applications are traditionally hosted by HTTP servers, with the various
resources making up the application being loaded dynamically by the web
run-time (i.e. a Web Browser). Web applications can also be packaged for
local installation, akin to native applications. There is a lack of interoperability
for packaged apps due variations across platforms, e.g. for the associated
manifests, and the use of proprietary APIs. This whitepaper surveys the field,
but does not claim to be fully comprehensive. However, it should provide a
broad picture of the approaches that have been taken in respect to handing
trust and permissions, and potential ways to move towards a general
consensus on how to extend the Open Web Platform.

Developer tools range widely in their sophistication. Some require advanced
programming skills, whilst others are aimed at end users. Note that some of
the platforms listed below are no longer available.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 19 of 298

mailto:dsr@w3.org
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536

A.2. NATIVE PLATFORMS

This section looks at trust and permissions for native application platforms.

A.2.1. Google's Android Platform

Android provides an extensive suite of APIs for
applications written in the Java programming
language. Each application includes a manifest
with a declaration of the permissions that the
app needs. Users are required to give their
consent before the application is installed. The
user may be asked again when the manifest for
app that is about to be upgraded requests an
expanded set of permissions.

The Android permissions are as follows:

• ACCESS_CHECKIN_PROPERTIES -
Allows read/write access to the
"properties" table in the checkin
database, to change values that get
uploaded.

• ACCESS_COARSE_LOCATION - Allows
an app to access approximate location
derived from network location sources
such as cell towers and Wi-Fi.

• ACCESS_FINE_LOCATION - Allows an
app to access precise location from
location sources such as GPS, cell
towers, and Wi-Fi.

• ACCESS_LOCATION_EXTRA_COMMANDS - Allows an application to
access extra location provider commands

• ACCESS_MOCK_LOCATION - Allows an application to create mock
location providers for testing

• ACCESS_NETWORK_STATE - Allows applications to access information
about networks

• ACCESS_SURFACE_FLINGER - Allows an application to use
SurfaceFlinger's low level features.

• ACCESS_WIFI_STATE - Allows applications to access information about
Wi-Fi networks

• ACCOUNT_MANAGER - Allows applications to call into
AccountAuthenticators.

• ADD_VOICEMAIL -
• AUTHENTICATE_ACCOUNTS - Allows an application to add voicemails

into the system.
• BATTERY_STATS - Allows an application to collect battery statistics
• BIND_ACCESSIBILITY_SERVICE - Must be required by an

AccessibilityService, to ensure that only the system can bind to it.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 20 of 298

http://developer.android.com/reference/android/Manifest.permission.html

• BIND_APPWIDGET - Allows an application to tell the AppWidget service
which application can access AppWidget's data.

• BIND_DEVICE_ADMIN - Must be required by device administration
receiver, to ensure that only the system can interact with it.

• BIND_INPUT_METHOD - Must be required by an InputMethodService,
to ensure that only the system can bind to it.

• BIND_NFC_SERVICE - Must be required by a HostApduService or
OffHostApduService to ensure that only the system can bind to it.

• BIND_NOTIFICATION_LISTENER_SERVICE - Must be required by an
NotificationListenerService, to ensure that only the system can bind to
it.

• BIND_PRINT_SERVICE - Must be required by a PrintService, to ensure
that only the system can bind to it.

• BIND_REMOTEVIEWS - Must be required by a RemoteViewsService, to
ensure that only the system can bind to it.

• BIND_TEXT_SERVICE - Must be required by a TextService
• BIND_VPN_SERVICE - Must be required by a VpnService, to ensure that

only the system can bind to it.
• BIND_WALLPAPER - Must be required by a WallpaperService, to ensure

that only the system can bind to it.
• BLUETOOTH - Allows applications to connect to paired bluetooth

devices
• BLUETOOTH_ADMIN - Allows applications to discover and pair

bluetooth devices
• BLUETOOTH_PRIVILEGED - Allows applications to pair bluetooth

devices without user interaction.
• BRICK - Required to be able to disable the device (very dangerous!).
• BROADCAST_PACKAGE_REMOVED - Allows an application to broadcast

a notification that an application package has been removed.
• BROADCAST_SMS - Allows an application to broadcast an SMS receipt

notification.
• BROADCAST_STICKY - Allows an application to broadcast sticky intents.
• BROADCAST_WAP_PUSH - Allows an application to broadcast a WAP

PUSH receipt notification.
• CALL_PHONE - Allows an application to initiate a phone call without

going through the Dialer user interface for the user to confirm the call
being placed.

• CALL_PRIVILEGED - Allows an application to call any phone number,
including emergency numbers, without going through the Dialer user
interface for the user to confirm the call being placed.

• CAMERA - Required to be able to access the camera device.
• CAPTURE_AUDIO_OUTPUT - Allows an application to capture audio

output.
• CAPTURE_SECURE_VIDEO_OUTPUT - Allows an application to capture

secure video output.
• CAPTURE_VIDEO_OUTPUT - Allows an application to capture video

output.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 21 of 298

• CHANGE_COMPONENT_ENABLED_STATE - Allows an application to
change whether an application component (other than its own) is
enabled or not.

• CHANGE_CONFIGURATION - Allows an application to modify the
current configuration, such as locale.

• CHANGE_NETWORK_STATE - Allows applications to change network
connectivity state

• CHANGE_WIFI_MULTICAST_STATE - Allows applications to enter Wi-Fi
Multicast mode

• CHANGE_WIFI_STATE - Allows applications to change Wi-Fi
connectivity state

• CLEAR_APP_CACHE - Allows an application to clear the caches of all
installed applications on the device.

• CLEAR_APP_USER_DATA - Allows an application to clear user data.
• CONTROL_LOCATION_UPDATES - Allows enabling/disabling location

update notifications from the radio.
• DELETE_CACHE_FILES - Allows an application to delete cache files.
• DELETE_PACKAGES - Allows an application to delete packages.
• DEVICE_POWER - Allows low-level access to power management.
• DIAGNOSTIC - Allows applications to RW to diagnostic resources.
• DISABLE_KEYGUARD - Allows applications to disable the keyguard
• DUMP - Allows an application to retrieve state dump information from

system services.
• EXPAND_STATUS_BAR - Allows an application to expand or collapse the

status bar.
• FACTORY_TEST - Run as a manufacturer test application, running as the

root user.
• FLASHLIGHT - Allows access to the flashlight
• FORCE_BACK - Allows an application to force a BACK operation on

whatever is the top activity.
• GET_ACCOUNTS - Allows access to the list of accounts in the Accounts

Service
• GET_PACKAGE_SIZE - Allows an application to find out the space used

by any package.
• GET_TASKS - Allows an application to get information about the

currently or recently running tasks.
• GET_TOP_ACTIVITY_INFO -Allows an application to retrieve private

information about the current top activity, such as any assist context it
can provide.

• GLOBAL_SEARCH - This permission can be used on content providers to
allow the global search system to access their data.

• HARDWARE_TEST - Allows access to hardware peripherals.
• INJECT_EVENTS - Allows an application to inject user events (keys,

touch, trackball) into the event stream and deliver them to ANY window.
• INSTALL_LOCATION_PROVIDER - Allows an application to install a

location provider into the Location Manager.
• INSTALL_PACKAGES - Allows an application to install packages.
• INSTALL_SHORTCUT - Allows an application to install a shortcut in

Launcher

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 22 of 298

• INTERNAL_SYSTEM_WINDOW - Allows an application to open windows
that are for use by parts of the system user interface.

• INTERNET - Allows applications to open network sockets.
• KILL_BACKGROUND_PROCESSES - Allows an application to call

killBackgroundProcesses(String).
• LOCATION_HARDWARE - Allows an application to use location features

in hardware, such as the geofencing api.
• MANAGE_ACCOUNTS - Allows an application to manage the list of

accounts in the AccountManager
• MANAGE_APP_TOKENS - Allows an application to manage (create,

destroy, Z-order) application tokens in the window manager.
• MANAGE_DOCUMENTS - Allows an application to manage access to

documents, usually as part of a document picker.
• MASTER_CLEAR - Not for use by third-party applications.
• MEDIA_CONTENT_CONTROL - Allows an application to know what

content is playing and control its playback.
• MODIFY_AUDIO_SETTINGS - Allows an application to modify global

audio settings
• MODIFY_PHONE_STATE - Allows modification of the telephony state -

power on, mmi, etc.
• MOUNT_FORMAT_FILESYSTEMS - Allows formatting file systems for

removable storage.
• MOUNT_UNMOUNT_FILESYSTEMS - Allows mounting and unmounting

file systems for removable storage.
• NFC - Allows applications to perform I/O operations over NFC
• PERSISTENT_ACTIVITY -
• PROCESS_OUTGOING_CALLS - Allows an application to see the number

being dialed during an outgoing call with the option to redirect the call
to a different number or abort the call altogether.

• READ_CALENDAR - Allows an application to read the user's calendar
data.

• READ_CALL_LOG - Allows an application to read the user's call log.
• READ_CONTACTS - Allows an application to read the user's contacts

data.
• READ_EXTERNAL_STORAGE - Allows an application to read from

external storage.
• READ_FRAME_BUFFER - Allows an application to take screen shots and

more generally get access to the frame buffer data.
• READ_HISTORY_BOOKMARKS - Allows an application to read (but not

write) the user's browsing history and bookmarks.
• READ_LOGS - Allows an application to read the low-level system log

files.
• READ_PHONE_STATE - Allows read only access to phone state.
• READ_PROFILE - Allows an application to read the user's personal

profile data.
• READ_SMS - Allows an application to read SMS messages.
• READ_SOCIAL_STREAM - Allows an application to read from the user's

social stream.
• READ_SYNC_SETTINGS - Allows applications to read the sync settings

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 23 of 298

• READ_SYNC_STATS - Allows applications to read the sync stats
• READ_USER_DICTIONARY - Allows an application to read the user

dictionary.
• REBOOT - Required to be able to reboot the device.
• RECEIVE_BOOT_COMPLETED - Allows an application to receive the

ACTION_BOOT_COMPLETED that is broadcast after the system finishes
booting.

• RECEIVE_MMS - Allows an application to monitor incoming MMS
messages, to record or perform processing on them.

• RECEIVE_SMS - Allows an application to monitor incoming SMS
messages, to record or perform processing on them.

• RECEIVE_WAP_PUSH - Allows an application to monitor incoming WAP
push messages.

• RECORD_AUDIO - Allows an application to record audio
• REORDER_TASKS - Allows an application to change the Z-order of tasks
• SEND_RESPOND_VIA_MESSAGE - Allows an application (Phone) to

send a request to other applications to handle the respond-via-message
action during incoming calls.

• SEND_SMS - Allows an application to send SMS messages.
• SET_ACTIVITY_WATCHER - Allows an application to watch and control

how activities are started globally in the system.
• SET_ALARM - Allows an application to broadcast an Intent to set an

alarm for the user.
• SET_ALWAYS_FINISH - Allows an application to control whether

activities are immediately finished when put in the background.
• SET_ANIMATION_SCALE - Modify the global animation scaling factor.
• SET_DEBUG_APP - Configure an application for debugging.
• SET_ORIENTATION - Allows low-level access to setting the orientation

(actually rotation) of the screen.
• SET_POINTER_SPEED - Allows low-level access to setting the pointer

speed.
• SET_PROCESS_LIMIT - Allows an application to set the maximum

number of (not needed) application processes that can be running.
• SET_TIME - Allows applications to set the system time.
• SET_TIME_ZONE - Allows applications to set the system time zone
• SET_WALLPAPER - Allows applications to set the wallpaper
• SET_WALLPAPER_HINTS - Allows applications to set the wallpaper

hints
• SIGNAL_PERSISTENT_PROCESSES - Allow an application to request

that a signal be sent to all persistent processes.
• STATUS_BAR - Allows an application to open, close, or disable the status

bar and its icons.
• SUBSCRIBED_FEEDS_READ - Allows an application to allow read

access to subscribed feeds ContentProvider.
• SUBSCRIBED_FEEDS_WRITE - Allows an application to allow writes

access to subscribed feeds ContentProvider.
• SYSTEM_ALERT_WINDOW - Allows an application to open windows

using the type TYPE_SYSTEM_ALERT, shown on top of all other
applications.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 24 of 298

• TRANSMIT_IR - Allows using the device's IR transmitter, if available
• UNINSTALL_SHORTCUT - Allows an application to uninstall a shortcut

in Launcher
• UPDATE_DEVICE_STATS - Allows an application to update device

statistics.
• USE_CREDENTIALS - Allows an application to request authtokens from

the AccountManager
• USE_SIP - Allows an application to use SIP service
• VIBRATE - Allows access to the vibrator
• WAKE_LOCK - Allows using PowerManager WakeLocks to keep

processor from sleeping or screen from dimming
• WRITE_APN_SETTINGS - Allows applications to write the apn settings.
• WRITE_CALENDAR - Allows an application to write (but not read) the

user's calendar data.
• WRITE_CALL_LOG - Allows an application to write (but not read) the

user's contacts data.
• WRITE_CONTACTS - Allows an application to write (but not read) the

user's contacts data.
• WRITE_EXTERNAL_STORAGE - Allows an application to write to

external storage.
• WRITE_GSERVICES - Allows an application to modify the Google service

map.
• WRITE_HISTORY_BOOKMARKS - Allows an application to write (but not

read) the user's browsing history and bookmarks.
• WRITE_PROFILE - Allows an application to write (but not read) the

user's personal profile data.
• WRITE_SECURE_SETTINGS - Allows an application to read or write the

secure system settings.
• WRITE_SETTINGS - Allows an application to read or write the system

settings.
• WRITE_SMS - Allows an application to write SMS messages.
• WRITE_SOCIAL_STREAM - Allows an application to write (but not read)

the user's social stream data.
• WRITE_SYNC_SETTINGS - Allows applications to write the sync settings
• WRITE_USER_DICTIONARY - Allows an application to write to the user

dictionary.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 25 of 298

This list was included to illustrate the extensive
range of permissions, and that many of these
are specific to the design of the platform as
opposed to generic capabilties. Not all devices
will support all capabilities, e.g. NFC and IR.

Android's consent form provides generic
descriptions of the requested permissions, but
not what the given applications will do with
them.

This approach encourages users to tap the
ACCEPT button to proceed to try out the app,
without an understanding of why the app needs
these permissions. Trust is based upon the
popularity and ranking of the app on the
Android app store (Google Play), the name of
the developer (if a well known brand), and faith
in security apps like Lookout to intervene if you
inadvertently are trying to install malware.

Android's approach to permissions means that
developers can rely on all the permissions listed

in the app's manifest as the user has to agree to them as a whole and can't pick
and choose. Note that just because a permission was granted doesn't mean the
device has the hardware to support the associated capability, so developers
need to exercise some caution.

A.2.2. Apple's iOS Platform

Apple's iOS platform was the first major smart phone operating system, and
runs apps developed with the Objective-C programming language.

• iOS Developer site
• UIApplication class reference

A major difference between iOS and
Android is that in Android, permissions
are requested up front before installing
an application, whereas in iOS,
permissions are requested at the time of
use of a particular capability, and users
may deny the request. This means that
app developers need to explain how the
capability will be used prior to invoking
the permission dialogue. If users tap
"Don't Allow", there is no easy way for
them to change their mind. Brenden
Mulligan's techcrunch post on the right way to ask users for iOS permissions)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 26 of 298

https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/Reference/Reference.html#//apple_ref/doc/uid/TP40006728-CH3-DontLinkElementID_1
http://techcrunch.com/2014/04/04/the-right-way-to-ask-users-for-ios-permissions/

recommends providing clear explanations of benefits, followed by an app
generated dialogue asking for a permission, and if the user says yes, this is
then followed by the operating system generated permissions dialogue. If the
user says no to the app generated dialog, the app can later ask again, without
the user having to gone through the complicated steps to undo the Operating
System's record of the user's "Don't accept" action. Note that unlike Android,
developers need to write their code to fail gracefully if the permission isn't
forthcoming.

Changing the permissions in iOS6: Step 1 - activate the Settings dialogue.
Step 2 - tap on "Privacy". Step 3 - tap on the category of capabilities you
are interested in. Step 4 - step through the list of applications and toggle the
permission on or off.

This illustrates another difference from Android. Apple has opted for a coarse
set of capabilities for users to deal with when it comes to permissions, which
compares to the very long list of fine grained capabilities listed above for
Android.

Question: Does iOS allow you to view and change all the permissions for a
given app in a single dialogue for that app?

A.2.3. Microsoft Windows Runtime

The Microsoft Windows Runtime enables developers to create apps with
JavaScript, C#, Visual Basic, and C++ APIs for the Microsoft Windows Store.
This covers devices ranging from tablets to desktops to large wall mounted
touch screen displays. Having done so, you can port your app to Windows
Phone for distribution on the Windows Phone Store. This wide range of devices
presents challenges for designing the user experience, and Windows 8
supports a variety of navigation patterns.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 27 of 298

http://windows.microsoft.com/en-us/windows-8/apps#Cat=t1
http://msdn.microsoft.com/en-us/library/windows/apps/dn636144.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn636144.aspx
http://www.windowsphone.com/en-us/store/
http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx

• Windows App Studio is an online app creation tool for Windows and
Windows Phone.

"Windows Runtime APIs will look and feel familiar to experienced
Web developers. They represent a clean extension of standards
based web development APIs"

The Windows Runtime supports an extensive suite of asynchronous APIs, and
developers can take advantage of standard components such as FileReader,
Web Sockets, Geolocation, IndexedDB and others. Asynchronous programming
is handled with Promises, which provide an object representing a value that
has yet to be computed, or an error that has yet to occur. The Windows
Runtime defines more than 800 individual classes and enums, along with
a hierarchy of namespaces. The Windows Runtime APIs are split into the
following categories:

• Core
• Controls
• Data and content
• Devices
• Files and folders
• Globalization
• Graphics
• Helpers
• Media
• Networking
• Printing
• Presentation
• Remote Desktop
• Security
• Social
• UI Automation
• User interaction
• Windows Preview API

Some APIs are restricted to Windows Runtime Apps and are not supported for
desktop apps or browsers. APIs also distinguish between HTML and XAML as
user interface markup languages. Windows Runtime apps using JavaScript are
executing using the Windows Internet Explorer Standards mode. As a result
some HTML and DOM APIs behave differently or aren't supported.

Anssi Kostiainen comments:

I believe the reason for Windows Runtime disabling some Web
APIs is mainly due to security (document.write, innerHTML etc.)
or UI/UX (alert, close etc.) reasons, and not due to the standards-
compliant mode being used by the rendering engine. This is actually

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 28 of 298

http://appstudio.windows.com/en-us?stay=
http://msdn.microsoft.com/en-us/library/windows/desktop/br211377.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh700404.aspx

rather similar to how Chrome Apps [1] disable some APIs that are
exposed to Chrome the browser by default.

This seems to suggest APIs should be designed in such a way they
can be gated behind e.g. a promise.

A.2.4. Windows Phone

Apps for Windows Phone can be
developed in JavaScript, C++, C#,
and VB.NET. Windows Phone requires
users to agree to a list of permissions
upfront as a precondition to install
apps from the Windows Phone Store.
The permissions needed are listed on
the left side of the app's page in the
Store under the heading "App
requires". Here is a list of permissions
that apps can request according to
the Windows Phone Central website.

• Appointments – Allows an app
to access the calendar and
appointment info on your
phone.

• Camera – Allows an app to
access the phone's built-in
camera.

• Compass – Allows an app to
access the phone's built-in
compass, if available.

• Contacts – Allows an app to
access the contact info on your
phone.

• Data services – Your phone's
cellular data or Wi-Fi
connection.

• Gyroscope – Allows an app to
access the phone's built-in
gyroscope, if available.

• Location services – The approximate location coordinates of your phone.
• Photo, music, and video libraries – Allows an app to access all photos,

music, and videos on your phone.
• Microphone – Allows an app to record audio from the phone's built-in

microphone and to use Speech features.
• Movement and directional sensor – Allows an app to access the phone's

motion sensor.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 29 of 298

http://www.windowsphone.com/en-us/store/
http://www.windowsphone.com/en-us/how-to/wp8/apps/how-can-i-tell-if-an-app-has-requirements

• Proximity – Allows access to the phone's Bluetooth, Wi-Fi, and near field
communication (NFC) capabilities.

• Owner identity – An anonymous identifier that allows an app to
distinguish one person from another, but provides no personal info.

• Phone identity – A unique device identifier that allows an app to
distinguish one phone from another.

• Push notification service – Notifications that an app automatically sends
to your phone in the background.

• Ringtones – Allows an app to access the ringtone collection on your
phone.

• SD card – Allows an app limited access to the SD card.
• Speech recognition – Allows an app to access Speech features.
• Wallet – Allows an app to access items in your Wallet or to make

payments using your Wallet.
• Web browser – Allows an app to access your phone's web browser.
• Xbox – Allows an app to access the Xbox service or your account info.

The required permissions are declared in the app manifest which is an XML
file generated by Visual Studio from the app's project settings. Windows Phone
is similar to Android in requiring upfront permissions.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 30 of 298

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769509%28v=vs.105%29.aspx

A.2.5. Blackberry 10 Native Apps

Blackberry 10 is basd on the QNX
operating system. The Blackberry 10
native SDK allows you to develop apps
in C/C++ or QML (a JavaScript like
scripting language for Qt). The
operating system generates a dialog
box automatically to request
permissions from the user. The user can
decide which requested permissions to
grant and the choices are recorded for
use when the app runs the next time, or
even after the app upgrades or updates.
Developers must list the permissions
they want in the bar-descriptor xml file.
Permissions are divided into categories:

• User-granted permissions - the
user is prompted to grant or deny
these permissions when the app
is first run.

• Restricted Permissions - use of
these permissions require your
app to be signed in accordance
with the conditions imposed by
the Blackberry World storefront.

• Developer-driven permissions
- these must be listed in the bar-
descriptor file, and enable
platform features that are useful in specific circumstances.

Permissions can structured into main and nested permissions. Users can
choose whether to grant all sub-permissions under the main permission or just
a subset.

A.3. CROSS PLATFORM FRAMEWORKS

These frameworks allow developers to create app using cross platform
technologies, and either compile them into native apps that can run on a
variety of operating systems, or provide a native run-time that can execute
cross platform code. This can cut the time to deliver to multiple target
platforms. Cross platform frameworks inherit the trust/permissions model from
the native platform.

According to Research Guidance (see below), the most popular tools are
PhoneGap and jQuery Mobile, followed by Adobe Air, Qt Creator, Unity 3D,
Titanium, Marmalade, Sencha Touch, Xamarin, Unity Mobile, and Corona SDK.
Cross platforms tools are mainly used to develop apps for games, followed

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 31 of 298

http://developer.blackberry.com/native/documentation/cascades/getting_started/index.html
http://developer.blackberry.com/native/documentation/cascades/getting_started/index.html
http://developer.blackberry.com/native/documentation/cascades/dev/tools/app_permissions.html

by utilities, business, education and entertainment in decreasing order of
popularity.

For more in-depth reviews of cross platform frameworks, see:

• Cross Platform App Development Tool Benchmarking 2013 , October
2013, Research Guidance

• In-depth profiles for major cross-platform developer tool vendors,
February 2012, VisionMobile.

• Pros and Cons of the Top 5 Cross-Platform Tools, November 2013,
DeveloperEconomics

The following covers just a few cross platform frameworks. A wider set is
covered in the appendices. These include: Telerik, Appcelerator Titanium,
Xamarin/Mono, Qt, Unity 3D/Mobile, Corona SDK, Marmalade, GINGEE,
Codename One, DragonRad, RunRev LiveCode, IBM Worklight, MoSynch,
RhoMobile, and Whoop. Further research is needed to identify how most of
these solutions approach the challenge of permissions.

A.3.1. PhoneGap/Apache Cordova

PhoneGap is an open source distribution of Cordova, which is a mobile app
development framework supported by the Apache Cordova project, see the
PhoneGap FAQ. It allows developers to use HTML5 and JavaScript to create
native apps for Apple iOS, Blackberry, Google Android, LG webOS, Microsoft
Windows Phone, Nokia Symbian OS, Tizen, Bada, Firefox OS and Ubuntu
Touch. There are separate SDK's for each target platform. Cordova supports
a small set of APIs, and these can be supplemented through plugins. The core
plugins include:

• Battery Status - Monitor the status of the device's battery.
• Camera - Capture a photo using the device's camera.
• Contacts - Work with the devices contact database.
• Device - Gather device specific information.
• Device Motion - Tap into the device's motion sensor.
• Device Orientation - Obtain the direction that the device is pointing.
• Dialogs - Visual device notifications.
• File System - Hook into native file system through JavaScript.
• File Transfer - Hook into native file system through JavaScript.
• Geolocation - Make your application location aware.
• Globalization - Enable representation of objects specific to a locale.
• In App Browser - Launch URLs in another in-app browser instance.
• Media - Record and play back audio files.
• Media Capture - Capture media files using device's media capture

applications.
• Network Information - Quickly check the network state, and cellular

network information.
• Splash Screen - Show and hide the applications splash screen.
• Vibration - An API to vibrate the device.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 32 of 298

http://research2guidance.com/cross-platform-tool-benchmarking-2013/
http://www.visionmobile.com/product/cross-platform-developer-tools-2012/
http://www.developereconomics.com/pros-cons-top-5-cross-platform-tools/
http://cordova.apache.org/
http://phonegap.com/about/faq/
http://cordova.apache.org/docs/en/3.5.0/guide_platforms_index.md.html#Platform%20Guides
http://plugins.cordova.io/#/

Some of the commonly downloaded plugins include: device, console, file,
inappbrowser, network-information, dialogs, splashscreen, camera and
geolocation. At the time of writing this whitepaper, the cordova website listed
234 plugins.

A.3.2. Adobe AIR

AIR (Adobe Integrated Runtime)
is a cross platform run-time
system for desktop and mobile,
based upon Adobe's ActionScript
and the Adobe Flash Player,
together with extensions for
device capabilities such as access
to the local file system, taskbar/
dock integration, accelerometer
and GPS. The permissions model
is inherited from Flash and
tailored for each target platform,
e.g. iOS, Android, Blackberry, and
so forth. The screen shot is for the
Flash Settings panel on Linux and
has tabs for:

• Camera and microphone
• Global storage settings
• Global security settings
• Protected content playback
• Website privacy settings
• Website storage settings
• Peer assisted networking

A.4. WEB-BASED PLATFORMS

The Web is characterised by the availability of browsers on many different
devices and operating systems, and from a variety of different vendors. There
is good interoperability for core features, although application developers do
need to consider varations in support, especially from older browsers, or for
new features where the standards are still emerging. Popular web libraries like
jQuery can simplify development through APIs that mask differences across
browsers.

A recent trend is the emergence of platforms that combine the core features
of the web with proprietary features for an alternative to native application
platforms. These support server based applications in the same way as
conventional web browsers, and also support installed applications, where the
various components have been packaged into a single file for easy installation
and offline operation.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 33 of 298

http://www.adobe.com/uk/products/air.html

More recently, there is growing interest in enabling server-hosted applications
to work better offline using Service Workers. Related work on application
manifests provides a means for developers to put metadata associated with a
web application. As these mature, they are expected to provide cross vendor
alternatives to packaged apps, which today need to be tailored to each
platform due to variations in packaging formats across vendors.

A.4.1. Chrome Apps

Google Chrome Apps are essentially web applications that run on the Google
Chrome web run-time and execute without the regular browser UI (aka
chrome). Google supports both server hosted and packaged apps.

Chrome Apps deliver an experience as capable as a native app, but
as safe as a web page. Just like web apps, Chrome Apps are written
in HTML5, JavaScript, and CSS. But Chrome Apps look and behave
like native apps, and they have native-like capabilities that are much
more powerful than those available to web apps. Chrome Apps have
access to Chrome APIs and services not available to traditional web
sites.

The app lifecycle has the following steps:

Installation
The user picks the app from the app store and chooses to install it, and
in the process explicitly grants the permissions the app requests in its
manifest.

Start up
The app launches with an "event page" and one or more "app pages".

Termination
The user or the operating system can terminate apps at any time. Apps can
save their state for subsequent invocations.

Update
Apps can be updated at any time, but this doesn't effect apps while they are
currently running.

Uninstallation
Users can uninstall apps. Google Chrome ensures that all executing code
and private data associated with the app are purged.

Chrome apps use the same security model as the Open Web Platform. This
includes the Same Origin model, support for Content Security Policies, app
local storage, and isolation between different windows for the same app. The
permissions model requires upfront consent by the user. It is unclear what
requirements there are for app developers to explain to the user just how each
of the requested permissions will be used by the app. This makes Chrome

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 34 of 298

http://www.w3.org/TR/service-workers/
http://www.w3.org/2008/webapps/manifest/
http://www.w3.org/2008/webapps/manifest/
https://developer.chrome.com/apps/about_apps

Apps along with Android subject to the click through effect, where users feel
encouraged to give consent in order to start using the app.

The following lists the currently available permissions:

• alarms
• audio
• audiocapture
• browser
• clipboardRead
• clipboardWrite
• contextMenus
• copresence
• desktopCapture
• diagnostics
• dns
• experimental
• fileBrowserHandler
• fileSystem
• fileSystemProvider
• gcm
• geolocation
• hid
• identity
• idle
• infobars
• location
• mediaGalleries

• nativeMessaging
• notificationProvider
• notifications
• pointerLock
• power
• pushMessaging
• serial
• signedInDevices
• socket
• storage
• syncFileSystem
• system.cpu
• system.display
• system.memory
• system.network
• system.storage
• tts
• unlimitedStorage
• usb
• videoCapture
• wallpaper
• webview

This can be compared with the Android permissions as described above.
Android provides a more extensive set of permissions that reflect the richer
integration with operating system level capabilities.

Some web features aren't available for use by Chrome apps or else are
supported in a different way. Google justify this as avoiding security issues
and improving programming practices. Some examples include cookies and
document.write. For more details see Google's page on Disabled Web Features.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 35 of 298

https://developer.chrome.com/apps/declare_permissions
https://developer.chrome.com/apps/app_deprecated

A.4.2. Firefox OS

Firefox OS is a Mozilla platform
for smart phones and tablets
based upon a web run-time
layered on top of the Linux
kernel. This allows developers to
create apps using HTML5,
JavaScript and CSS.

"The webapps platform that
we use in FirefoxOS and
Firefox Desktop allows any
website to be an app store",
Jonas Sicking, 2 June 2014,
Mozilla

The way Firefox OS handles app
permissions distinguishes
between hosted apps and
packaged apps. Hosted apps are
dynamically downloaded from
websites. Packaged apps are
installed on the device analogous
to native apps on other
platforms, and are divided up
into three categories:

• Web apps that don't make
use of privileged or
certified APIs, and may be
self-published outside of the Firefox Marketplace (these are equivalent
to hosted apps)

• Privileged apps that make use of privileged APIs and must be distributed
through the Firefox Marketplace

• Certified apps that are able to access privileged and certified APIs, are
preinstalled, and not available through the Firefox Marketplace

Privileged and certified apps are required to have content security policies.
Firefox OS makes use of JSON manifest files that are linked from the HTML
for hosted apps or included as part of packaged apps. All apps are required to
invoke an installation method to register the manifest. This directs Firefox OS
to validate the app and ask the user for approval to install the app.

Here is a list of permissions with the minimum app type required, and whether
the permission is enabled by default, or results in a prompt at the time of

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 36 of 298

http://www.mozilla.org/en-US/firefox/os/
https://developer.mozilla.org/en-US/Apps/Build/App_permissions
https://developer.mozilla.org/en-US/Apps/Build/App_permissions

use. Note that permissions for certified apps are intended for system level
applications.

Permission Description Minimum Default

alarms schedule notification
or app to be started hosted allow

audio
capture

get audio stream from
e.g. microphone hosted prompt

audio
channel
alarm

alarms from clock or
calendar privileged allow

audo
channel
content

music, video hosted allow

audio
channel
normal

UI sounds, web
content, music, radio hosted allow

audio
channel
notification

new email, incoming
SMS privileged allow

browser enables browser in
iframe privileged allow

camera
take photos, video,
record audio, control
camera

privileged prompt

contacts
read/write access
contacts on device or
SIM

privileged prompt

desktop
notification

display notification on
desktop hosted

prompt for
hosted apps,
otherwise
allow

device
storage
music

read/write access to
music stored on
device

privileged prompt

device
storage
pictures

read/write access to
pictures stored on
device

privileged prompt

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 37 of 298

Permission Description Minimum Default

device
storage
sdcard

read/write access to
files stored on SD card privileged prompt

device
storage
videos

read/write access to
video stored on device privileged prompt

fmradio control fm radio hosted allow

geolocation access device location hosted prompt

keyboard allow app to act as
virtual keyboard privileged allow

mobile
network

access network info
e.g. MCC, MNC privileged allow

push enable app to wake up
for notification hosted allow

storage utilize appcache,
indexedDB hosted allow

system XHR enable cross origin
XHR without CORS privileged allow

tcp socket create and use TCP
sockets privileged allow

video
capture

obtain video stream
from e.g. camera hosted prompt

attention
allow apps to open
window in front of
other apps

certified allowed

audio
channel
ringer

incoming phone calls certified allowed

audio
channel
telephony

telephone and VoIP
calls certified allowed

audio
channel
notification

forced camera shutter
sounds certified allowed

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 38 of 298

Permission Description Minimum Default

background
sensors

listen to proximity
events in background certified allowed

background
service

allow apps to run in
background certified allowed

bluetooth low level access to
Bluetooth hardware certified allowed

cell
broadcast

fire event e.g. on
emergency network
notification

certified allowed

device
storage
apps

read/write files in
apps storage location certified allowed

embed apps
allow embedding of
apps in mozApp
frames

certified allowed

idle notify when user is
idle certified allowed

mobile
connection

access to info about
voice and data
connection

certified allowed

network
events

monitor network
uploads and
downloads

certified allowed

network
stats
manage

access stats of data
usage per interface certified allowed

open
remote
window

window.open as new
process certified allowed

permissions
allow app to manage
permissions of other
apps

certified allowed

power
turn screen on/off,
control CPU, listen to
lock events

certified allowed

settings configure and read
device settings certified allowed

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 39 of 298

Permission Description Minimum Default

sms send and receive SMS certified allowed

telephony
enable telephony APIs
to make and receive
calls

certified allowed

time set current time certified allowed

voicemail access voicemail certified allowed

webapps
manage

manage installed open
web apps certified allowed

wifi manage
enumerate networks,
access strength,
connect to network

certified allowed

wappush receive WAP push
messages certified allowed

The Firefox OS approach to permissions implicitly grants some permissions
depending upon the application type (hosted, privileged or certified) and asks
the user for approval for other permissions, e.g. access to the camera. When
Firefox OS doesn't prompt, trust is based upon the review performed by a
human being (the App Store reviewer) who approves adding the app to the app
store.

An open question is whether Firefox OS allows you to view all the permissions
for a given app and choose whether to allow or deny them. It is likely that you
can't deny permissions for certified apps.

A.4.3. Ubuntu Web Apps

Note: Ubuntu also supports QML based apps, see e.g. this tutorial.

Ubuntu Web Apps enable Ubuntu users to run online applications like
Facebook, Twitter, Last.FM, Ebay and GMail direct from the desktop, and
treats web apps as first class citizens. This means that you can search for and
invoke web apps in just the same way as for native apps. Web apps can also
be selected for particular roles e.g. chat or photo sharing. Apps can access
standard Web APIs as well as Ubuntu platform APIs like Content Hub, Alarms,
and Online accounts, and others, such as Cordova, which provides access to
system and device level functionality like camera and accelerometer, see the
Ubuntu HTML5 apps developer page.

• Device and Sensors
◦ org.apache.cordova.battery-status
◦ org.apache.cordova.camera

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 40 of 298

http://developer.ubuntu.com/apps/qml/
http://developer.ubuntu.com/apps/qml/tutorial/
http://developer.ubuntu.com/apps/html-5/

◦ org.apache.cordova.device
◦ org.apache.cordova.device-motion
◦ org.apache.cordova.media-capture
◦ org.apache.cordova.vibration

• Graphical Interface
◦ UbuntuUI
◦ org.apache.cordova.dialogs
◦ org.apache.cordova.dialogs
◦ org.apache.cordova.splashscreen

• Platform Services
◦ AlarmApi
◦ ContentHub
◦ OnlineAccounts
◦ RuntimeApi
◦ org.apache.cordova.inappbrowser
◦ org.apache.cordova.network-information

• Multimedia
◦ org.apache.cordova.media

• Language Types
◦ org.apache.cordova.globalization

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 41 of 298

HTML5 apps are executed in a security sandbox (AppArmor). Each app needs
to provide a security profile using a web form to generate an AppArmor
policy file before upload to the Ubuntu Software Center. Users can set their
own security policy, and where this conflicts with app policies, this will block
the apps from being installed or executed. AppArmor supports the following
restrictions:

• Limit read and write access to a pre-defined list of files and directories
• Restrict access to the network
• Limit which network destinations an app can access
• Limit what DBus services the application can call
• Prevent apps from listening in on other apps' DBus communication
• Limit what external programs an app is able to call
• Limit what signals an app can use and where it can send them
• Force external programs to run under the same restrictions as the

calling app

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 42 of 298

https://wiki.ubuntu.com/AppDevUploadProcess#Security_Policy_Preparation
https://apps.ubuntu.com/cat/

• Display manager/server (requires kernel and userspace support from
AppArmor as well as support from the display manager/server)

◦ Prevent an app from listening in on another app's keyboard/
mouse input and output

◦ Restrict an application's ability to perform screenshots outside of
its window

◦ Restrict an application's ability to access the clipboard
◦ Restrict an application's ability to perform drag and drop
◦ Limit/Support 3D in some manner

In addition to AppArmor, sandboxing will be required by other parts of Ubuntu,
e.g.

• DConf/GSettings
◦ Prevent an app from writing to system-wide or session-wide

settings
◦ Prevent an app from reading or writing to another app's settings
◦ Prevent Gtk from loading and executing additional modules based

on an app's settings
• GNOME Keyring

◦ Prevent unauthorized apps from obtaining credentials
• Ubuntu Online Accounts

◦ Prevent unauthorized apps from obtaining credentials
• Location service

In summary, Ubuntu web apps are subject to security policies set by the
developer or the user for access to privileged APIs that extend the Open Web
Platform.

A.4.4. Nokia's Cloudberry

"A cloud phone is a mobile device in which all customer-facing
functionality is downloaded and cached dynamically from the Web,
including all the applications and even the entire top-level user
interface (UI) of the device."

Cloudberry is an HTML5-based cloud phone software platform developed by
Nokia Research Center. In Cloudberry, all mobile device applications are
written as Web applications, including core ones such as the phone dialer,
contacts, calendar, messaging, music player, and maps. Offline support relies
on standard HTML5 features. Device APIs are based on official W3C Device
APIs wherever applicable, and proprietary APIs are used in those areas that
standards don't yet cover. The security model is based upon Web Domains, i.e.
the standard security model for HTML5. Cloudberry has a permission-based
security model that restricts the use of device-specific functionality (such as
device APIs) to only those applications from trusted domains.

The above draws upon material from a post by Antero Taivalsaari and Kari
Systa in February 2013.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 43 of 298

http://www.w3.org/2009/dap/
http://www.w3.org/2009/dap/
http://www.infoq.com/articles/cloudberry-html5-cloud-phone-platform

A.4.5. Tizen

Tizen supports web applications as signed web widgets installed from the Tizen
app store, with the standard HTML5 APIs plus Tizen specific APIs. The Tizen
specific APIs are scoped to the tizen object, e.g.

try {
var adapter = tizen.nfc.getDefaultAdapter() ;

} catch (err) {
console.log (err.name +": " + err.message);

}

The Tizen APIs fall into the following categories:

• Application
◦ Alarm - support for setting and unsetting alarms.
◦ Application - information about running and installed

applications, and controlling them.
◦ Data Control - access to specific data exported by other

applications.
◦ Package - install or uninstall packages, and retrieve information

about installed packages.
• Communication

◦ Bluetooth - enables control over Bluetooth.
◦ Messaging - allows SMS, MMS, and Email message sending and

receiving.
◦ Network Bearer Selection - enable users to set network bearer for

a specific IP address.
◦ NFC - access to NFC device(s).
◦ Push - functionality for receiving push notifications.
◦ Secure Element - access to Secure Elements.

• Content
◦ Content - discover multimedia content (such as images, videos or

music).
◦ Download - support for downloading remote objects by HTTP

request
• Input/Output

◦ Filesystem - read/write access to device file system
◦ Message Port - communication with other applications

• Social
◦ Bookmark - access to Bookmarks.
◦ Calendar - management of calendar information.
◦ Call History - access to call history for cellular and VoIP calls.
◦ Contact - management of contact information.
◦ Data Synchronization - synchronize device data to the server

using the OMA DS 1.2 protocol.
• System

◦ Power - control power resources

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 44 of 298

https://developer.tizen.org/dev-guide/2.2.1/org.tizen.web.device.apireference/index.html
https://developer.tizen.org/dev-guide/2.2.1/org.tizen.web.device.apireference/index.html

◦ System Information - information about the device's display,
network, storage and other capabilities.

◦ System Setting - system setting functionality.
◦ Time - information about date, time and time zones.
◦ Web Setting - manages the setting states of the web view in web

applications.
• User Interface

◦ Notification - a way to notify the user of events that happen in the
application.

Widgets require authorization to access restricted APIs. The widget manifest
file lists the features that the applications wants to be able to access. The
manifest is represented in XML and each feature is assigned a URL based
name, e.g.

<widget xmlns="http://www.w3.org/ns/widgets">
<feature name = "http://example.com/api/contact" required = "false"/>

</widget>

Following the W3C Widget Access Request Policy (WARP), the app manifest
is also used to declare which network resources (such as XMLHttpRequest,
iframe, img, script, etc.) the widget would like to access, as by default, widgets
are not allowed to access the network, e.g.

<access origin="http://example.org:8080" subdomains="false"/>

The Tizen web runtime grants access to features according to the policy, which
sets which prompt type is to be used to request user approval.

• blanket prompt - User is prompted for confirmation the first time the
API function is called by the widget, but once confirmed, prompting is
never again required

• session propmpt - User is prompted once per session
• one-shot prompt - User must be prompted each time the restricted API

is invoked
• permit - Use of the device capability is always permitted, without asking

the user
• deny - Use of the device capability is always denied

Here is a sample Tizen policy file:

<policy-set id="Tizen-Policy" combine="first-matching-target”>
<policy id="Tizen-Policy-Trusted" description="Tizen's policy for trusted domain" combine="permit-overrides”>

<rule effect=”prompt-session"> <!– rules for specific resources -->
<condition combine="and">

<condition combine="or">
<resource-match attr="device-cap" func="equal" match="XMLHttpRequest" />
<resource-match attr="device-cap" func="equal” match="externalNetworkAccess" />
<resource-match attr="device-cap" func="equal" match="messaging.send" />

</condition>
<environment-match attr="roaming" match="true" />

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 45 of 298

http://www.w3.org/TR/widgets-access/

</condition>
</rule>
<rule effect=”permit" /> <!– all other matches -->

</policy>
</policy-set>

Tizen defines long lists of URLs for features, privileges, runtime, setting, and
system. See also Setting Widget Configuration, which provides links to widget
properties including license information, UI preferences, features, privileges,
network policies, localization, and other properties.

Tizen runtime and system URLs are enums used by certain Tizen APIs such
as System Information, and as such, not relevant to this paper. Settings are
proprietary config.xml extensions, some of which are now being standardized
in the W3C Manifest spec (e.g. orientation).

A.4.6. QNX automotive web apps

to be added

A.4.7. GM automotive web apps

to be added

GM provides an HTML5 platform for automotive apps

A.4.8. Ford SYNC AppLink

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 46 of 298

https://www.tizen.org/feature
https://www.tizen.org/privilege
https://www.tizen.org/runtime
https://www.tizen.org/setting
https://www.tizen.org/system
https://developer.tizen.org/dev-guide/2.2.1/org.tizen.web.appprogramming/html/app_dev_process/set_widget_web.htm
http://www.i-programmer.info/news/83-mobliephone/5309-ford-extends-sync-applink-api.html
http://www.i-programmer.info/news/83-mobliephone/5309-ford-extends-sync-applink-api.html

Ford SYNC is an integrated system for Ford cars with support for telephone
calls, music, traffic and navigation, etc. The system is based upon Microsoft's
Windows Automotive Embedded platform. SYNC AppLink is an API for apps
running on iOS, Android and Blackberry mobile devices to integrate with the
car's stereo system, dashboard buttons and display, via a Bluetooth or USB
connection.

For hands free operation, users can control apps with spoken commands,
along with speech synthesis for feedback. Ford limits access to the AppLink
API to certified applications as a safety measure. Apps are available for news
and information, music and entertainment, and navigation and location. It
is unclear whether Ford supports HTML5 apps with AppLink. News reports
indicate that Ford will switch to QNX for its next generation Sync system.

A.4.9. TV web apps (HbbTV)

to be added

A.5. W3C AND THE OPEN WEB PLATFORM

Describe the standard security framework for web apps, CORS and CSP. Then
describe the approach taken in recent W3C work (DAP, Geoloc, WebRTC,
Automotive). Summarise sysapps thread on including justfication in browser
generated consent dialog.

The Open Web Platform (OWP) is defined by the set of standards for web
protocols (HTTP, Web Sockets), HTML, CSS, JavaScript, and graphics (e.g.
JPEG, PNG, SVG), and covers the core features that are widely interoperable
across Web browsers and Web run-times. The security model is based upon the
same origin policy, which constrains web page scripts to only accessing the
execution context for pages originating from the same origin (a combination
of URI scheme, host name and port number). Scripts can only access HTTP or
Web Socket connections on the same origin as the page that loaded the script.

There are work arounds, e.g. dynamically adding script elements to the web
page as a means for remote procedure invocation. Cross-Origin Resource
Sharing (CORS) is based upon additional headers in HTTP responses that
indicate which origins may request this URI. The browser/web run-time
interprets these headers to relax the same origin policy. The document.domain
property provides another solution for documents with a common subdomain,
e.g. foo.example.com and bar.example.com.

Cross document messaging is possible with postMessage even when the
documents are from different domains. One document calls postMessage to
deliver data which the other document can handle by adding a listener for the
'message' event.

Content Security Policies can be set by the web page to disable potentially
harmful features. This can help defend against malicious changes to scripts,

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 47 of 298

http://www.bloomberg.com/news/2014-02-22/ford-said-to-swap-blackberry-s-qnx-for-microsoft-in-sync-system.html
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/2011/WD-html5-20110405/origin-0.html#relaxing-the-same-origin-restriction
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/CSP/

e.g. those loaded from other sites, or through content injection attacks on the
web page itself.

A.5.1. Permissions in the Open Web Platform

The OWP has so far dealt with permissions individually, specification by
specification. A key consideration has been to minimize disclosure of personal
information without the consent of the user. APIs with minimal impact on
privacy are enabled for any origin. For APIs with strong impacts on privacy, the
user's action to invoke a feature may be taken as implicitly granting permission
for use of an API, or the browser may ask the user for explicit consent.
Browsers vary in how they support re-use of a decision in further sessions, and
how users can revoke such decisions.

The geolocation API is exposed by the navigator.geolocation object. Scripts can
access the device location by calling the getCurrentPosition() method, passing
a function to be called with the current position. The browser then asks the
user for permission for the app to access the location, before invoking that
function. The W3C specification requires apps to disclose the purpose for the
collection, how long the data is retained, how the data is secured, how the data
is shared if it is shared, how users may access, update and delete the data, and
any other choices that users have with respect to the data. Browsers typically
offer to remember the user's decision for future sessions, along with a means
to revoke permissions.

Other examples include media capture via HTML forms, media streams and
image capture via a camera. An extension to HTML forms allows the browser
to prompt the user to select a media file from the local file system and upload
it as part of the form submission process. The action taken by the user to
select the media file is taken as implicit consent for uploading the file. W3C
is also working on APIs for taking a photo, or streaming audio or video from
the device's microphone and camera. These are handled in a similar way to the
geolocation API in that the request by a script to use these features results in
the browser asking the user for permission.

The Full Screen API allows apps to present in fullscreen mode. After entering
fullscreen mode, the user is made aware that the presentation is full screen,
and given a chance to revoke the permission. The specification states:

User agents should ensure, e.g. by means of an overlay, that the
end user is aware something is displayed fullscreen. User agents
should provide a means of exiting fullscreen that always works and
advertise this to the user. This is to prevent a site from spoofing
the end user by recreating the user agent or even operating system
environment when fullscreen.

See explanation by Chris Pearce.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 48 of 298

http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/fullscreen/
http://blog.pearce.org.nz/2013/12/why-does-html-fullscreen-api-ask-for.html

The W3C Device APIs Working Group previously worked on a proposed means
for standardizing names for permissions for given APIs (Permissions for Device
API Access), however, this hasn't been updated since October 2010.

A.5.2. What has been done right or wrong?

Marcos Caceres has asked for a meaningful discussion of what has been done
right or wrong on the Web. He cites the way the Fullscreen api's permission
works, and how geolocation API works the same across the Web and iOS. The
same with WebRTC and other permissions dialogs we encounter in browsers
and how users manage those (e.g., pointer lock).

A.5.3. Boris Smus on installable hosted web apps

Boris Smus' blog on Installable web apps: extend the sandbox argues for
installable server hosted apps with a clear "installation" step where apps can
ask for additional permissions. The step also associates the app with an icon,
e.g. on the user's home screen, that can be used to launch the app, review and
revoke its permissions. He further suggests an API for installing a web page as
an app. This would only work if the current execution thread is the result of a
user action, e.g. clicking/tapping on a button.

var button = document.querySelector('button#install');
button.addEventListener('click', window.app.requestInstall);

He also proposes an API for apps to request permissions at install time:

window.app.requestInstall({permissions: ['audioCapture']});

A.5.4. Robert O'Callahan on Permissions For Web
Applications

Robert O'Callahan's blog on Permissions For Web Applications argues against
introducing Android-like bundling of permissions with "up front" permission
grants. Instead, he encourages:

• Implicit Permission Grants -- where the user action can be taken as
granting permission

• Ask Forgiveness, Not Permission -- where the actions of a malicious
application can be easily detected and safely undone

• Remember This Decision -- remember if the user previously refused
permission

• Permissions in Context -- it is preferable to ask the user for permission
in the context of use

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 49 of 298

http://www.w3.org/2009/dap/
http://www.w3.org/TR/2010/WD-api-perms-20101005/
http://www.w3.org/TR/2010/WD-api-perms-20101005/
http://www.w3.org/TR/pointerlock/
http://smus.com/installable-webapps/
http://robert.ocallahan.org/2011/06/permissions-for-web-applications_30.html

A.5.5. Discussions in the System Applications Working
Group

A pertinent thread of discussion on the SysApps WG archives: Permissions UI
& Necessary API

• April 2014, starting with Doug Reeder (Wednesday, 23 April)
• May 2014, starting with Marcos Caceres (Friday, 2 May)

Doug initiated the discussion by referencing Brenden Mulligan's article on The
Right Way To Ask Users For iOS Permissions. Anssi Kostiainen responds with:

I extracted the following recommendations that might work for the
Web too. I probably missed some, so feel free to expand:

1. Allow the developer to associate a custom text string with the
permission request.

I observe some web-based platforms (see Firefox OS App manifest)
already provide a similar mechanism, however, I’m not sure if e.g.
Firefox OS uses the information in the context of use as
recommended (or just for upfront grants)?

Marcos Caceres comments: AFAIK, in FxOS they are only used
by marketplace reviewers to understand why a feature is being
requested by the developer - and then so the store reviewer can
make an assessment about the truthiness of the claim during code
review. In other words, I think the descriptions are just things that
mostly serve store owners. These things are not displayed to users
- the APIs access is then granted by Mozilla based on a successful
review.

Doug Reeder comments: Firefox OS requires an explanation string
in the app manifest, for example:

"permissions": {
"geolocation": {

"description": "Needed for geotagging (where you wrote a memo)"
}

}

IIRC, this is supposed to be displayed to the user during the install
process. It is never displayed while an app is running. I'm proposing
an explanation string per request, something like

navigator.geolocation.getCurrentPosition(
successFunc,
errorFunc,

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 50 of 298

http://lists.w3.org/Archives/Public/public-sysapps/2014Apr/thread.html#msg70
http://lists.w3.org/Archives/Public/public-sysapps/2014May/thread.html#msg11
http://techcrunch.com/2014/04/04/the-right-way-to-ask-users-for-ios-permissions/
http://techcrunch.com/2014/04/04/the-right-way-to-ask-users-for-ios-permissions/
https://developer.mozilla.org/en-US/Apps/Build/Manifest#permissions

{timeout: 300000, description: "geotag memos"}
);

We (Mozilla) never prompt users to grant permissions at install time
on Firefox OS. We only prompt at runtime for privacy related ones
that users can understand: geolocation, sdcard access, contacts for
instance.

We currently don't use the explanation string anywhere - one place
we could is in the settings panel that let the user revoke or grant
permissions for an app after installation.

Implications of this feature on the Web are a bit different than
on native ecosystems in which the content is usually curated. For
example, an evil application could lie to get you grant access to
some capabilities it wants to use for other — potentially malicious or
otherwise harmful — purposes than it told you to.

Doug Reeder: Colin Walters, in a comment on Robert O'Callahan's
blog post (Permissions For Web Applications) points out "you have
to know applications can pass messages to one another, so the
permission set is in reality the union of all of the ones from any apps
installed from a developer (or cooperating developers)"

Once info is passed to an app, there's no technical control over
what it does with that info, only social control (reviews saying "this
app lies about what it does!" ... or a consumer protection agency
investigation). In the current model, the app makes no promises
(other than app store boilerplate). An explanation per request allows
an app to be be clear. If many apps are clear, the hope is that users
will pay attention, be wary of apps that are vague, and avoid those
that lie.

An explanation per request does not imply a security dialog per
request. I envision the system showing one security dialog per
description string. So, the user would grant permission to 'allow
searchablenotes.hominidsoftware.com to use your computer's
location to "geotag memos"'. Most apps & websites would use only
one description, but some would use two or more different ones,
allowing a separate permission for 'allow example.com to use your
computer's location to "connect you to an appropriate call center"'.

Some further notes: infobars that have proliferated recently are part
of the chrome, and the convention has been the web content is
unable to modify this part of the UI. That said, there’s precedence
in legacy alert(), prompt(), and confirm() which allow the developer
to customise the message shown in these system UI widgets. These

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 51 of 298

http://robert.ocallahan.org/2011/06/permissions-for-web-applications_30.html

dialogs are modal, and are shown overlaid on top of the web content
so they’re different to infobars in that regard.

Furthermore, in some browsers, e.g. on iOS Safari, modal dialogs
are used similarly to infobars in other browsers to ask for
permissions. Actually with confirm() you could pretty closely
emulate the iOS Safari's “http://example.org Would Like to Use Your
Foobar [Don’t Allow] / [OK]” dialog only if the button labels were
developer-configurable (or if there would be a confirmPermission()
with labels that match the platform conventions).

2. Prefer user-triggered dialogs.

This reminds me of the good old <input type=file>. We’ve extended
the model with some extra capabilities such as HTML Media
Capture in the past.

Doug Reeder: This is great where you can do it, such as a standard
map app, which can have a button "Show my location". I'm running
into a situation where the user gets a system permission dialog, and
it's not clear why to him or her. This is where it would be helpful for
developers to pass a context string as part of an API request.

3. Show an educational pre-permission overlay.

This does not require any changes to the platform APIs. The
developer can build such a dialog with HTML and friends. I’d guess
there must be some examples of this type of a pre-permission
overlay being used on the Web too, anyone?

Coming back to the key finding of the article. It appears the
approaches outlined make sense for iOS given the significantly
increased acceptance rates, so I think it is a worthwhile exercise to
see whether some of this could be used for the Web too.

I asked if it makes sense to allow the developer to associate a
custom text string with the permission request. However, for
uncurated applications there is a risk of apps misleading users
into granting permission by providing incorrect descriptions of the
purposes involved.

Dave Raggett notes:

Moving the explanation to the app's content (as suggested by
Brenden Mulligan for iOS apps) won't stop apps from lying, so I
don't find that to be a compelling solution. It is up to reviewers and

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 52 of 298

http://www.w3.org/TR/html-media-capture/
http://www.w3.org/TR/html-media-capture/

curators of app stores to ascertain when an app is misleading users
or otherwise falls foul of the app store's requirements.

A more compelling argument is that app developers will want
control of how the justification for using a given capability is
presented to the user. This further suggests the requirement for
apps to determine which of the following apply:

a. user has yet to be asked for a decision
b. user has previously granted permission
c. user has explicitly denied permission

Without this information, it would be hard for developers to provide
the appropriate user experience. Does FirefoxOS offer developers
this info?

p.s. if the user previously granted the permission just this time, the
situation is essentially (a) in that attempting to access the capability
now will result in the browser asking the user for permission.

Anssi responds:

An API that fulfils the requirements a-c above was experimented
with in the Device APIs WG couple of years ago, known as Feature
Permissions [1]. The spec was put on hold as "the only immediately
obvious relevant use case [was] for Web Notifications”. Eventually,
the Web Notifications API settled on a slightly different model [2]
in which the UA’s default permission setting (allow or deny) is not
exposed.

Some known issues with the model in [1] include privacy concerns
over exposing user’s preference to the web content (from the
privacy perspective, the web content should not need to know
whether you have explicitly declined or just ignored the permission
prompt) and other potential for misuse (e.g. block the user’s flow
until she grants permission). That said, this thread suggests there
may be also legitimate use cases for such a feature.

Doug - the API shape aside, do you think an API such as [1] would
be part of the solution to your problem?

Doug responds: Yes. If my app knew the user had not granted
permission (despite setting the app preference), it could open a
dialog setting out choices to the user.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 53 of 298

http://dev.w3.org/2009/dap/perms/FeaturePermissions.html
http://dev.w3.org/2009/dap/perms/FeaturePermissions.html
http://notifications.spec.whatwg.org/#permission

I’m wondering what are the lessons learned from the Web
Notifications API that ships in Firefox, Chrome, Safari, and some
others browsers. I recall reading web developers’ feedback a while
ago but I’m unable to find a good pointer now.

Marcos responds to Dave:

In respect to a-c, it might be interesting to map these out for various
APIs. For example, Geolocation:

a. user has yet to be asked for a decision

The developer can record this in localStorage.

localStorage.geoEnabled = "haven't asked yet".

b. user has previously granted permission

navigator.geolocation.getCurrentPosition(function(){
if(!localStorage.geoEnabled !== "yep"){

localStorage.geoEnabled = "yep"
});

c. user has explicitly denied permission

navigator.geolocation.watchPosition(function(e){},
function(e){

\\1 === PERMISSION_DENIED
if(e.code === "1") {localStorage.geoEnabled = "denied"};

});

So, with Geolocation you might have enough information.

Doug: Unfortunately for my situation, if the user allows geolocation
once, it says nothing about whether it will be allowed the next time.
In Chrome, allowing geolocation is persistent, but in Firefox and
Firefox OS it's not persistent unless the user clicks a second control.

Marcos responds: Ok, good to know. Do you think just adding

`geolocation.permission === 'enabled'`

or similar would address the use case? Also, maybe good if we could
move this back to the list?

Doug responds: Yes, that would solve my problem.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 54 of 298

Theoretically, permission could change between checking and
calling getCurrentLocation, but if I'm calling them in the same tick,
ocurrence should be vastly rarer than geolocation failures.

Anssi responds: I think that is not really a concern. I don’t see
anything getting in between the following considering the single-
threaded nature of JavaScript:

if (geo.permission === 'enabled') {
geo.getCurrentPosition();

}

Or perhaps you have a more complete real life example in mind?

Anssi comments: Whether implementations persist, or allow the
user to persist, permission settings vary by browser and by feature.
And this will likely remain so.

To further complicate things, sometimes subtle hints of
trustworthiness of the site are used to decide whether to allow
persisting a permission or not. For example, Chrome allows
persisting gUM permission only if the content is served over HTTPS,
while for Geolocation the permission is persisted regardless of the
protocol.

iOS is probably the strictest in this regard, and never persists
permissions for regular web content (only for things bookmarked to
homescreen, which is another hint of trustworthiness).

An opportunity to dig into this a bit more.

On May 6th, Anssi wrote:

A proposal by Nikhil elsewhere on how Promise.all() might be used:

Promise.all([
Notification.requestPermission(),

// Some shimmed form that returns a Promise
navigator.push.hasPermission()

]).then(function(perms) {
if (perms[0] == 'granted') { // notifications ok; }
if (perms[1] == 'granted') { navigator.push.register(); }

});

Promise.all() returns a promise that resolves when all of the
promises passed to it have resolved. I’m wondering if something like
the following has obvious issues:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 55 of 298

https://github.com/w3c/push-api/issues/3#issuecomment-42997477

[NoInterfaceObject]
interface Permissions {

Promise requestPermission ();
Promise hasPermission ();
/* ... */

};

Notification implements Permissions;
PushManager implements Permissions;
/* ... */
Geolocation implements Permissions;

I think not all APIs can be retrofitted with this, but many could.

Marcos responds: Seems unnecessary to have this return a promise,
IMO. Just make it an attribute.

Anssi then says: Yeah, the reason for that was to make it work
with Promise.all as suggested by Nikhil. However, it seems whatever
passed to Promise.all is converted to a promise by means of
Promise.cast, so we could make it an attribute as you suggest.

Details aside, I think the main question is does such an interface
make sense in the first place?

Marcos then says: Like I said previously, I think the only way to
know is to work through some example cases with real code. Doing
thought experiments can only get us so far. We would also need to
find a few more example cases in the wild and then we can take
those to the appropriate WGs.

Anssi: I actually already asked Nikhil in the GH issue from where
this idea originated from whether he has been doing further
exploration in code. If someone comes up with other experiments,
please let us know.

Marcos: I'd be inclined to prototype having an attribute in Gecko.
The `requestPermission()` method seems redundant to me because
interfaces already implicitly or explicitly have these methods (yes,
they are inconsistent across the various APIs - but in the case of
Geolocation the permission request is explicitly bound to an action
- watchPosition(), getCurrentPosition(), and I think that is a "good
thing"[tm]).

Some other APIs - specially new ones - would likely benefit from
`requestPermission()` tho, but I'm still not sure if existing APIs
would.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 56 of 298

Anssi: It appears some implementers would prefer to have
hasPermission() return a Promise, at least for some APIs, see Peter
Beverloo's email of 29 Apr 2014:

The Notification specification defines a static
Notification.permission accessor, which returns one of
{granted, denied, default}. This requires the browser
to synchronously determine whether the page has
permission to show notifications, whereas checking this
may be an asynchronous operation. This is the case in
Chrome.

Before this becomes a paradigm, could we consider
having a static hasPermission() instead, returning a
Promise?

I'll add a UseCounter to Blink for tracking
Notification.permission usage, but it will take some time
before conclusive usage data comes in.

Chrome is collecting stats on the usage of the sync .permission, so
we should get some data on how widespread the usage is.

A.6. SUMMARY AND FUTURE WORK

As the Open Web Platform expands, new capabilities are likely to require
new ways of managing permissions. Some platforms, e.g. Android, ask users
upfront for permission when an app is installed or first run, whereas others
like iOS ask users for permission when the application is attempting to use
a given capability. Rather than asking the user for permission in advance,
another approach is to invite the user to continue or to cancel an action after
it has occurred, i.e. asking for forgiveness rather than permission -- this is the
approach taken in the Fullscreen API, see the explanation by Chris Pearce. In
some cases, the user's actions can be taken as implicitly granting permission,
for a detailed analysis of this approach, see Roesner et al. A further approach
is for users to delegate decisions on permissions to a trusted 3rd party (if it's
okay by them, it's okay by me). What is needed to arrive at a consensus for a
cross vendor solution?

A.6.1. Some questions for further study

Group 1: User Consent

• What criteria are there for choosing between asking users upfront for
permissions, asking at the time of use, asking for forgiveness rather

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 57 of 298

http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2014-April/254176.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2014-April/254176.html
http://blog.pearce.org.nz/2013/12/why-does-html-fullscreen-api-ask-for.html
http://research.microsoft.com/pubs/152495/user-driven-access-control-nov2011.pdf

than permission, implicit approval via user actions, or mediated by the
platform or trusted 3rd party?

• Is it practical to offer users clear explanations about how capabilities
will be used prior to being asked to make decisions on whether or not to
grant applications permissions for these capabilities? What is the basis
for users to trust these explanations?

• How can developers tailor the user experience, e.g. the presentation of
justifications of the need for a given capability prior to asking the user
for permission? This necessitates a means for apps to discover whether
the user has previously granted permission, has previously declined to
grant permission or has yet to be asked.

◦ Standards are needed for common capabilities and how these
are named in order to provide developers with good expectations
of interoperability, and to give users a consistent and
understandable experience across different applications and
devices.

• What are the implications that different approaches have for API design?
For instance, the implicit approach could enable APIs only in execution
contexts triggered by user interaction, e.g. a click, tap or keyboard short
cut. This, however, is open to abuse by mislabeling UI controls to fool
users to into initiating actions without their knowledge.

◦ What are the implications for app developers when the user
has granted some but not all permissions requested by an app?
This relates to proposals for returning a promise when testing if
permissions have been granted.

• Can we reach a consensus on a consistent approach to whether users
are offered the chance to apply their decision for the rest of this session
and subsequent sessions? This should depend on the level of trust in the
application, e.g. whether it was accessed over an encrypted connection,
whether it is from a trusted website, whether it has a high reputation,
and so forth.

Group 2: Delegated Trust

• What roles are there for trust delegation? This could, for example, be
exploited to avoid asking users for permissions for capabilities that are
hard to explain. Apps stores may be trusted on the basis of their vetting
procedures. Well known websites, that host their own apps, may be
trusted on the basis of their brand. Other sites may find it advantageous
to have their apps endorsed by a trusted third party. What kinds of limits
can be imposed for trust delegation? For instance, limiting delegation to
given categories of apps, and excluding apps featuring in-app payments.

• Web apps have the unique ability to embed one another (through e.g.
iframe); how does this embedding affect the ability of a Web app to
request permission? how does an app with privileges indicates its
willingness to be used with privileges once embedded? how does an app
prevent an embedded app to request privileges (e.g. with the sandbox
attribute of an iframe)?

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 58 of 298

Group 3: Permission Management

• When and how does the user know that a Web site has access to a
given permission? how to deal with indicators in the browser chrome
on mobile screens (with limited screen real estate), or when they app is
running full screen?

• Is there a need to inform apps when the user revokes a permission, e.g.
to enable the app to dynamically adapt the user experience to match?

• How should browsers adapt their permission models to the security
environment of the app? How does the use of HTTPS, Content-Security-
Policy, script integrity, cross-origin requests affect the permissions an
app may be granted?

◦ with the emergence of ServiceWorker, a number of Web app will
be able to run in the background; how does the operation in
background/foreground of an app affects its privileges?

◦ some mobile platforms restrict some permissions to certified
apps, to which other apps need to delegate the privileged
operation; how does that model apply to the Web? How does it
relate with proposals around integration of third-party apps such
as the late Web intents, or registerProtocollHandler()

• What level of granularity is appropriate for permissions? Too low a
level will make it hard to explain to users, whilst too high a level will
limit the end user's freedom of choice. Furthermore, the granularity of
permissions will have consequences for developers in how they deal with
the cases where users decline to grant particular permissions.

• Some capabilities are very specific to a given platform and as such
are inappropriate for standardization. Conversely, there is pressure to
agree on a standard where many developers are seeking a cross-vendor
solution.

• Access to some capabilities may be restricted, e.g. consider the case
where an application can only access the engine related API in a car if
the application is signed by the car manufacturer.

Group 4: Miscellaneous Topics

• How much leeway should be left to individual implementors of the Open
Web Platform? For example, does it make sense for the application
manifest to list the permissions needed by the application, but leave it
up to the platform implementation to determine whether to ask upfront
or at the time of use?

• It may take some time to arrive at a consensus for a detailed solution,
so can we reach some initial agreements that enable work to proceed in
parallel on standards for APIs for specific capabilities?

An open face to face meeting is now planned for early September 2014 to bring
a variety of stakeholders together to discuss trust and permissions, and to try
to determine a roadmap towards a broad consensus. One possibility would be
to set up a W3C Community Group to continue the discussion with a view to
feeding into the standards track with a chartered work item in a W3C Working

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 59 of 298

Group. If there is a strong consensus on the approach to be taken, then we
could skip the Community Group step and go straight to the Working Group,
or perhaps to set up a Cross Working Group Task Force. Note that we need
the agreement of sufficient browser vendors to ensure that the work is widely
deployed.

At the end of the meeting we would like to have a clear idea for next steps:

• Areas where we have a rough consensus and need to work on the
details?

• Areas where we are still some way apart and what steps can be taken to
close the gap?

• What can be ruled as out of scope for W3C work on trust and
permissions in the open web platform?

• Whether we want to set up a Community Group, a Cross Working Group
Task Force or some other approach?

• What design rules can we give to allow work to proceed in parallel on
APIs and trust & permissions?

Some further reading:

Note: this is just a sample, and not intended to be authoratative.

• Information on API Permissions collected by the Web and Mobile
Interest Group

• How to Ask For Permission, HotSec'12, Porter Felt, et al.
• Towards Comprehensible and Effective Permission Systems, Adrienne

Porter Felt, Ph.D dissertation
• User-Driven Access Control: Rethinking Permission Granting in Modern

Operating Systems, Roesner et al
• Exploring Notice and Choice: Design Guidelines for a User-Centered

Permission Model for Personalized Services, Johnson et al
• Installable Webapps: Extend the Sandbox by Boris Smus
• Permissions For Web Applications by Robert O'Callahan
• Draft white paper on trust and permissions by Dave Raggett

A.7. ACKNOWLEDGEMENTS

This work was done with support from the European Commission under grant
agreement no: 611327 (HTML5 for Apps: Closing the Gaps). Thanks also to
Anssi Kostiainen, Marcos Caceres and Dominique Hazael-Massieux for their
comments on an earlier draft of this document.

A.8. APPENDICES

This section contains material that has been moved from earlier sections. This
includes cross platform frameworks where the permissions model is inherited
from each of the target platforms. It also includes libraries for web applications
where the permissions model is inherited from the web platform.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 60 of 298

https://www.w3.org/wiki/Mobile/articles#API_Permissions
http://www.w3.org/Mobile/IG/
http://www.w3.org/Mobile/IG/
https://www.usenix.org/system/files/conference/hotsec12/hotsec12-final19.pdf
https://www.usenix.org/conference/hotsec12
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-185.pdf
http://research.microsoft.com/pubs/152495/user-driven-access-control-nov2011.pdf
http://research.microsoft.com/pubs/152495/user-driven-access-control-nov2011.pdf
http://research.microsoft.com/pubs/210053/tech-report-app-permissions.pdf
http://research.microsoft.com/pubs/210053/tech-report-app-permissions.pdf
http://smus.com/installable-webapps/
http://robert.ocallahan.org/2011/06/permissions-for-web-applications_30.html
../../05/wp-trust-permissions/Overview.html

Cross platform frameworks allow developers to create app using cross
platform technologies, and either compile them into native apps that can
run on a variety of operating systems, or provide a native run-time that can
execute cross platform code. This can cut the time to deliver to multiple target
platforms. Cross platform frameworks inherit the trust/permissions model from
the native platform.

According to Research Guidance (see below), the most popular tools are
PhoneGap and jQuery Mobile, followed by Adobe Air, Qt Creator, Unity 3D,
Titanium, Marmalade, Sencha Touch, Xamarin, Unity Mobile, and Corona SDK.
Cross platforms tools are mainly used to develop apps for games, followed
by utilities, business, education and entertainment in decreasing order of
popularity.

For more in-depth reviews of cross platform frameworks, see:

• Cross Platform App Development Tool Benchmarking 2013 , October
2013, Research Guidance

• In-depth profiles for major cross-platform developer tool vendors,
February 2012, VisionMobile.

• Pros and Cons of the Top 5 Cross-Platform Tools, November 2013,
DeveloperEconomics

A.8.1. Telerik

Telerik provides UI controls for HTML5 and .NET, along with the Telerik
platform for mobile app development.

A.8.2. Appcelerator Titanium

Appcelerator is a Californian technology company that provides the
Appcelerator platform for cross platform mobile development with an open
source Titanium SDK and an enterprise software suite covering development,
testing, deployment and analytics. Titanium supports iOS, Android, Windows
Phone, Blackberry OS and Tizen, enabling developers to create rich native
mobile apps from a single JavaScript-based SDK. Titanum includes Alloy which
features a model-view-controller architecture for rapid development of UI
components based upon XML markup and style sheets, as a declarative
alternative to creating UI components directly from JavaScript.

A.8.3. Xamarin/Mono

Xamarin enables developers to create apps for iOS, Android, and Windows
Phone using the C# programming language, and derives from earlier work
on the Mono open source project to support Microsoft's .NET framework on
the Linux operating system. Xamarin includes binding for the indigenous SDKs
for each of the platforms it supports. Where needed, you can directly invoke
Objective-C, Java C and C++ libraries. Xamarin claim that applications can

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 61 of 298

http://research2guidance.com/cross-platform-tool-benchmarking-2013/
http://www.visionmobile.com/product/cross-platform-developer-tools-2012/
http://www.developereconomics.com/pros-cons-top-5-cross-platform-tools/
http://www.telerik.com/
http://docs.appcelerator.com/platform/latest/
http://docs.appcelerator.com/platform/latest/#!/guide/Alloy_Framework
https://xamarin.com/

share up to 90% of their code across platforms when using the Xamarin Mobile
library. Further details are given in the Xamarin developer guides.

A.8.4. Qt

Qt features a cross platform integrated development environment (Qt Creator)
and run-time with support for C++, and the JavaScript like QML user interface
modelling language. Qt targets desktop, mobile and embedded devices, e.g.
Android, BlackBerry, iOS, Linux/X11, Mac OS X, Windows and Windows CE.
Qt Cloud Services provides support for application backends. More details are
available on the Qt Project website.

A.8.5. Unity 3D/Mobile

Unity is a cross platform game engine for web plugins, desktop, consoles and
mobile devices. For scripting you can use UnityScript (similar to JavaScript)
or Boo (similar to Python). Supported platforms include BlackBerry, Windows,
Windows Phone, Mac OS X, iOS, Android, Adobe Flash, PlayStation, Xbox, and
Wii.

A.8.6. Corona SDK

Corona SDK enables developers to create 2D games, business, eBooks and
educational apps for mobile devices including iPhone, iPad, and Android. The
SDK includes a wide range of third party tools and services. Scripting is based
upon the Lua programing language.

A.8.7. Marmalade

The Marmalade SDK targets desktop, tablets, smart phones and TVs.
Developers can work with C++, Lua, HTML or Objective-C. Apps are compiled
to native binaries for ARM or x86 and combined with a platform specific
loader. Target platforms include Windows, Mac OSX, LG Smart TV, ROKU, iOS,
Android, BlackBerry, Windows Phone and Tizen.

A.8.8. GINGEE

GINGEE provides for cross platform development on mobile devices with a
focus on games. Its Liquid UI adapts the UI to the device allowing apps to
have the same look across all devices, based upon a library of UI components.
The SDK claimes to offer near-native run-time speeds, GINGEE offers easy
integration with social media, analytics and monetization. Targetted platforms
include iOS, Android, Amazon Kindle Fire, Barnes & Noble NOOK, BlackBerry,
Facebook, Smart TV and Windows PC.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 62 of 298

http://developer.xamarin.com/guides/cross-platform/getting_started/
http://qt-project.org/
http://unity3d.com/unity
http://coronalabs.com/products/corona-sdk/
https://www.madewithmarmalade.com/marmalade
http://www.gingee.com/

A.8.9. Codename One

Codename One is an open source project that enables developers to use Java to
create apps that have the native look and feel for iOS, Android, Windows Phone
and Blackberry.

A.8.10. DragonRad

The DragonRAD Designer is developer tool for creating enterprise apps for
smart phones and tablets BlackBerry, Android, iOS and Windows Mobile. It
supports the Lua scripting language. The DragonRAD Host provides access to
enterprise databases via a Windows or Linux server. The DragonRAD Client
provides a native run-time that interprets and runs your application.

A.8.11. RunRev LiveCode

LiveCode is inspired by Apple Hypercard with a drag and drop developer
tool and a scripting language resembling Hypercard's HyperTalk, see the
beginner's guide. The component model includes stacks, cards and objects,
and is event driven. LiveCode stacks can be build for Windows, Mac OS, Linux,
iOS and Android and inherit the native platform's look and feel.

A.8.12. IBM Worklight

IBM Worklight provides a framework for developing, running and managing
HTML5, hybrid and native apps on smart phones and tablets. You develop
with HTML5 and JavaScript and then customize the resources for each target
platform. The framework can generate web and native code specific to each
target environment, For hybrid apps, Worklight relies on PhoneGap for access
to device APIs. You can also take advantge of third party tools, libraries and
frameworks including jQuery Mobile, Sencha Touch and DojoMobile.

A.8.13. MoSynch

MoSynch is an open source SDK that allows you to develop mobile apps using
C/C++ and HTML5/CSS/JavaScript with a native look and feel for each target
platform, including Android, iOS, Windows Mobile, Windows Phone, Symbian,
Java Mobile and the Moblin platform.

A.8.14. RhoMobile

This is an integrated framework based upon the Ruby programming language.

Motorola Solutions' Rhomobile is an open source framework for developing
native apps for smartphones including iOS, Android, BlackBerry, Windows
Mobile and Windows Phone. Rhohub is a service for developing apps online.
Developers can use JavaScript or Ruby scripting languages with the Rhodes
API for access to device level capabilities including the camera and device

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 63 of 298

http://www.codenameone.com/
http://www.seregon.com/overview
http://livecode.com/
http://livecode.com/developers/guides/beginners-guide/
http://www-03.ibm.com/software/products/en/worklight
http://www.mosync.com/
http://docs.rhomobile.com/en/4.1.0/home
http://rhohub.com/

location. Rhomobile is similar to PHP in allowing you to create user interfaces
using HTML5 markup with embeded code that can be used to tailor the user
experience to the target platform.

A.8.15. Whoop

The Whoop Creative Studio is a drag and drop design tool for easy
development of mobile apps for iOS, Android, BlackBerry and Windows Phone.
It seems to have been discontinued.

A.8.16. WAC 2.0

The former Wholesale Applications Community (WAC), together with mobile
network operators (Carriers), developed a suite of specifications for mobile
web applications. These were subsequently transferred to the GSMA in July
2012 when WAC was dissolved. WAC built upon the W3C specifications for
HTML5 and the BONDI project of the preceding Open Mobile Terminal
Platform Ltd.

WAC had the aim of enabling developers to create packaged web apps for use
on home screens and app stores. The packaging format uses W3C Widgets,
Access control policies are based upon rules expressed in the XML-based
XACML rule language. According to wikipedia, Policies can be set on a widget
provider level (for signed widgets) on a widget level or on an API call-by-call
level for web pages.

I've asked Nick Allott for further information on the approach taken for user
consent, and any feedback gathered from developers and end-users on its
effectiveness.

A.8.17. jQuery

jQuery is a very popular cross brower JavaScript library that simplifies
application development, for instance, network access, manipulating the DOM,
and applying animations and effects. There is a growing set of plugins for
extending jQuery. jQuery Mobile is a related cross browser JavaScript library
built on top of jQuery Core, and aimed at making it easier to create responsive
websites for smart phones, tablets and desktop. It supports a range of UI
controls and themes. Both libraries stick within the existing browser security
model.

A.8.18. Sencha Touch

This is a UI framework for mobile devices using a JavaScript library, and
enables developers to develop mobile web applications that look and feel like
native applications. Sencha Touch targets, iOS, Android, Windows, Tizen and
Blackberry based devices.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 64 of 298

http://specs.wacapps.net/index.html
http://www.w3.org/TR/widgets/
http://en.wikipedia.org/wiki/BONDI_(OMTP)
http://jquery.com/
http://plugins.jquery.com/
http://jquerymobile.com/

A.8.19. Dojo Mobile

A.8.20. Netbiscuits Tactile

Netbiscuits Tactile is a cloud software service for cross-platform development,
publication and monetization of mobile sites and apps based upon HTML5. It
looks like Netbiscuits has now discontinued this service.

A.8.21. WidgetPad

This is an open source platform for developing HTML5 apps tailored for
devices using Android, WebOS and iOS. It seems to have been discontinued.

A.8.22. webinos

An EU research project that focused on extending the Open Web Platform with
a rich suite of APIs for accessing resources within devices that form a user's
Personal Zone, e.g. a desktop PC, a tablet, a smart phone, a smart TV or a
web-enabled car. The devices enrolled in a Personal Zone are subject to strong
security with mutual authentication, and access control policies based upon
XACML.

B. MINUTES FROM MEETING ON TRUST AND
PERMISSIONS FOR WEB APPLICATIONS

3–4 September 2014, Paris, France

Meeting page

Present:

• Dave Raggett, W3C
• Dominique Hazaël-Massieux, W3C (remote)
• Robin Berjon, W3C (webapps etc.)
• Wendy Seltzer, W3C (security, privacy) 2nd day only
• Stefan Håkansson, Ericsson (Co-chair Media Capture TF, WebRTC)
• Philipp Hoschka, W3C
• Giridhar Mandyam, Qualcomm
• Claes Nilsson, Sony Mobile
• Wonsuk Lee, Samsung
• Vadim Draluk, GM (automotive)
• Adrienne Porter Felt, Google
• Jonghong (Jonathan) Jeon, ETRI
• Steven Woolcock, Apple
• John Hazen, Microsoft
• Stephanie Ouillon, Mozilla
• Kenneth Rohde Christiansen, Intel
• Olivier Potonniee, Gemalto

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 65 of 298

http://www.netbiscuits.com/news/press/2012/03/12/netbiscuits-launches-tactile-html5-framework/
http://www.w3.org/2014/07/permissions/

• Anssi Kostiainen (remote)
• Virginie Galindo (remote)

Credits to Johnathon Jeon

B.1. WEDNESDAY, 3RD SEPTEMBER

B.1.1. Session 1: Introductions by participants

We went around the room (and the phone) introducing ourselves.

Dave set out the meeting objectives:

• Areas where we have a rough consensus and need to work on the
details?

• Areas where we are still some way apart and what steps can be taken to
close the gap?

• What can be ruled as out of scope for W3C work on trust and
permissions in the open web platform?

• Whether we want to set up a Community Group, a Cross Working Group
Task Force or some other approach?

• What design rules can we give to allow work to proceed in parallel on
APIs and trust & permissions?

At the end of the meeting we would like to have a clear idea for next steps

B.1.2. Session 2: Logistics and agenda tweaking

We decided to stick with the agenda on the meeting page

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 66 of 298

Session 3: Review of existing practices for the Open Web Platform (OWP)

Wonsuk goes through history from SysApps till today:

SysApps attempted to handle many APIs (around 15) with focus on packaged
apps with input from Tizen, Firefox OS and Chrome OS.

Issues: Packaged apps were very tied to the specific stores which broke the
basic idea of the web: the hyperlink. Second issue: Versioned apps, web apps
are usually updated on the go without the users having to install an update.
Less than 5% of apps on the FirefoxOS market place use APIs requiring the
app to be a packaged app instead of a hosted one.

Note: It was decided that content protection (DRM) would be considered out-
of-scope for this meeting.

From GMandyam[a]: I believe the reason the SysApps WG failed in developing
a runtime and security specification for installable web apps was that many
platforms had already solved this problem[b] independent of the W3C. Any
standard developed by the W3C in this area may be ignored by the industry.
The focus for this work should be on hosted web apps.

Geolocation-specific issues (GMandyam):

The PING group conveyed the concern (during the May meeting focused on the
re-chartered Geolocation Working Group) that service providers do not provide
information to the end user as to how geolocation information is used by the
website. The current browser permissions model does not cover this. However,
mechanisms that rely on the browser chrome for expressing intended use of
geolocation information are subject to abuse.

Geolocation WG looks at adding geofencing which is security sensitive (indoor
location, SSIA sharing, etc). Ad services: Sites adds the location as part of the
request. There were privacy concerns about setting up geofences with respect
to indoor centroids, as many times the most effective way to define the centroid
is with respect to an indoor WiFi AP. Does the end user want a website to know
the SSID of an AP in his/her home? Does the browser need to obscure such
information from the website?

Native platforms have solved geolocation permissions mainly through declared
permissions[c] (e.g. in a manifest) and/or application signing. The signing is
supposed to be an indication of trust - the app has been vetted by an app store.
However, app stores still have to rely on end user feedback in order to revoke
permissions for rogue apps.

Media Capture/WebRTC (StefanH):

Pioneered by Ian Hickson, first proposal was device element, based on
feedback the navigator.getUserMedia was introduced. The original idea was
that the app should not know anything before granted access (the user should

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 67 of 298

be presented with the possibility to opt in to any devices (=microphones,
cameras) available, but the app would not know about available devices before
access granted), but has developed into that the app _is_ able to find out what
devices are available before asking access, and can ask for what devices it
wants access to. In short, the current model allows for more fingerprinting
than the original model.

Persistent access has also been introduced, meaning that an app could get
access (if the user agrees) to devices without being presented with a prompt.
This requires that the app is served over https.

Once the app has access to devices it can record to file (and then send the
recording anywhere), capture images, send to arbitrary peer. But isolated
media streams have been introduced, they prohibit recording/image capture
and can only be sent to a peer with a defined identity.

Screen sharing is currently being discussed, proposal at http://rawgit.com/
fluffy/w3c-screen-share/master/screenshare.html

Dom about the DAP models:

4 of DAP APIs are permission-less: Battery Status API, Ambient Light Event,
Proximity Events, Vibration API. HTML Media Capture uses an implicit
approval model: by taking the picture and selecting it, the user implicitly
approves sharing it with the browser app. Network Service Discovery has a
prompt then implicit-selector to determine from which devices to e.g. select
media. The upcoming Wake Lock API expects to use the “ask for forgiveness
rather than permission” approach, whereby the ability to keep the screen up is
granted by default, but the user gets informed and can revoke that permission
at the same time. Web Intents waking up again

B.1.3. Session 4: Review of approaches used by other
platforms (web and native)

We had summaries for iOS, Android, Windows Phone, Chrome Apps, Firefox
OS, and GM

Steven Woolcock gave us a quick overview of Apple's approach for iOS. There
are a small number of permissions and when apps invoke the APIs for the
corresponding capabilities, the user is prompted to obtain the permission. The
context in which the prompts occur make it easier for users to understand
what the prompts are for as compared to asking for permissions at install time.
Apple has recently provided a means for developers to pass an explanatory
string for use in the operating system generated permission dialogues.

Steven noted that in certain cases it would be desirable to ask for permissions
prior to use. One example is where parents want to control what permissions
are appropriate for apps used by their children.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 68 of 298

Adrienne Felt summarised how permissions are used in Android. There are
something like 150 permissions available. The ones that developers think they
will need have to be declared in the application manifest and users have to
give their consent as a precondition for installing an app. A few permissions
are only available to applications certified by Google. Dom cited the API for
bricking a stolen phone as an example.

She also described a study she had been involved in which exampled app
program code to see which APIs the app used and compared this with the
manifest to see whether developers are requesting privileges they aren't using.
For the most part developers just request the permissions they need, and most
of the exceptions seem to be explained by misunderstandings of what a given
permission is required for.

Adrienne commented that when asked users thought about pernissions in
terms of what they thought developers would do, and by and large, didn't
appreciate the space of possibilities that permissions enable.

Dave wondered if permissions could be tied to use policies that are
contractually binding on developers. If apps are found to breach these policies,
then the apps and developers could be black listed.

Others noted that the Android permission model trained users to click through
the consent dialogue in order to try out the newly installed app.

In many ways users would prefer to know whether the app is trustworthy or
not and not have to see the legalese of the permissions dialogue.

John Hazen: Notes on Microsoft Permissions Model

The Microsoft model for permissions in Windows 8 was driven by earlier
experiences with User Account Control (UAC) prompts, and by a desire to
minimize the total number of permissions available to developers and end
users. In both of these cases our prior experience indicated to us that users
and developers will do the wrong thing, either by simply clicking through
dialogs or by overdeclaring permissions just to make the app work. Our desire
to keep the list short was driven by a desire to ensure that the developers
and users could reason clearly about the capability. We ended up with about
a dozen capabilities, but they are not very nuanced. For example, the picture
library capability does not distinguish between read-only access or read-write
access. The desire to minimize prompts led us to favor implicit consent through
user actions, for example using the file picker to access particular files, or
even choosing to install a particular app from the Windows Store. The only
place where we decided to keep explicit prompts was for capabilities which
expose something about the user in real time (geoloc, camera, microphone,
etc.). In most cases, the end-user is delegating trust to the Store for many
of the capabilities. This of course means that the Store needs to have an
adequate review process to weed out most malware, but also needs to have
revocation capabilities for cases where mis-behaving apps have been released

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 69 of 298

to the wild. Finally, I also noted that it is not always the end-user who really
should be making the trust decision--for example, in the Windows ecosystem
access to Enterprise Credentials (Domain creds) is a powerful capability, but
the resources that are being protected do not belong to the user - they belong
to the network administrator, so the platform allows the network admins to
allow/deny such apps from running on their networks.

Stéphanie Ouillon: Firefox OS Permission Model

We worked on a paper about the app permission model in Firefox OS. The
following is copied from that document except for the table on permssions vs
levels.

Permission Model Overview

Firefox OS’s proprietary APIs require permissions if they expose sensitive data
or functionality to the web. Apps declare the permissions they want in an
associated JSON manifest. Permissions are then denied/allowed or granted by
the user according to the permission level of the app. Additionally permissions
which have privacy implications also require user consent, by way of a runtime
at first use of the API.

Permission Levels

“Web” apps permissions

“Web” apps follow the web security model and in general can not gain higher
privileges than regular web pages. They may be hosted or packaged, and
installed via the Firefox Marketplace, or from any website.

“Privileged” permissions

More sensitive APIs are restricted to “privileged” apps. For actually receiving
these permissions, the app must be signed by the Mozilla Marketplace.
“Privileged” apps are ZIP files that are digitally signed and distributed from
the Mozilla Marketplace. All privileged apps undergo a security review by a
(human) reviewer. The application review process is described at the following
link: https://developer.mozilla.org/en-US/Marketplace/Publishing/
Marketplace_review_criteria

“Certified” permissions

“Certified” permissions give access to system APIs which are needed to build
a web-based mobile operating system. For security and/or privacy reasons,
these APIs cannot be exposed to either privileged or hosted apps. Certified
permissions can only be granted at build time (Gaia apps) and are not available
to apps installed by the user (except to side-loaded apps for developers).

Challenge: exposing these APIs to the Web

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 70 of 298

https://docs.google.com/a/mozilla.com/document/d/1HFyI7WDBcVz2U2MD54ITY6g_I6iYc7tJsqImNpyRt30

Mozilla wants to evolve our proprietary APIs so they can be exposed to the
web. The biggest challenge for this task is resolving intersection between the
traditional use cases of native apps and the security risks of the APIs needed to
support these use cases. In general there are three approaches to this problem:

• limit the functionality of the APIs so they are safe enough for the web
• adding system level mitigating controls to address security threats (e.g.

notification UI to make the user aware that an app is using a certain
device)

• mandating security requirements for apps to increase the level of in web
application code

Firefox OS currently employs a mixture of these approaches. Making the APIs
safer

• Adding more granularity to the permission model in order to expose
safer API subsets

e.g the Mobile Network API exposes a read-only subset of the Mobile
Connection API to allow privileged apps identify the carrier without needed to
talk directly to the SIM card or mobile network. See details here:

https://developer.mozilla.org/en-US/docs/Web/API/MozMobileNetworkInfo

• Exposing an API through system-mediated UI

e.g. the Mobile ID API allows an app to verify the user’s mobile number without
needing access to directly be able to send a silent SMS (which is a common use
case).

See details here: https://wiki.mozilla.org/WebAPI/MobileIdentity

• Requiring user-interaction to prevent inadvertent access to APIs

e.g. Sensor access (accelerometer etc) is limited to content which is in the
foreground to prevent surreptitious monitoring.

e.g. getUserMedia, as on desktop browsers, requires prompt prior to granting
access to the camera/microphone streams.

System Security Controls

• Notification UI

e.g. The notification bar shows when an app is using the camera through
getUserMedia, to make the user aware that the camera/microphone is enabled.

• Global configuration

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 71 of 298

e.g. Enable/disable GPS button to allow users control over when geolocation is
available.

Improving trust

Enforcing an integrity mechanism to that apps can not be modified

e.g. Privileged apps require apps to be static code within a ZIP file, and a
Content Security Policy is enforced to ensure that only script from within that
package can be run within the privileged application origin.

Challenge: the Web is dynamic, and forcing static content limits how web apps
can be developed and deployed.

• Signing application content

Privileged apps are required to be signed by the Mozilla marketplace to ensure
they have gone through security review.

Challenge: current implementation requires code to be static ZIP files, similar
issues as to above.

Challenge: Firefox Marketplace is the only source of trust for signing
privileged applications. How do we delegate this trust to in the decentralised
model of the web?

See discussion about the future of packaged apps and app developer signing:
https://groups.google.com/forum/#!topic/mozilla.dev.webapi/68I80XiipBI

Reviewing application code

e.g. Privileged apps go through manual review prior to being granted
privileged permissions.

Challenge: how to scale this control to the web?

API Case Studies

Advancing the permission model will require reviewing specific APIs and use
cases. Below are some key APIs which represent some of the main types of
APIs indicative:

API: MozMobileMessageManager
Description: API used by the system apps to send & receive SMS and MMS
messages.

Notes:

• Extremely high threat API - abuse directly costs the user’s money and
compromises privacy

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 72 of 298

https://developer.mozilla.org/en-US/docs/Web/API/MozMobileMessageManager

• WebAPI Security Discussion: Web SMS API

API: DeviceStorage
Description: Add, read, or modify media files stored on the device.

Notes:

• If content is exposed to the web, it is compromised if the app developer
server is hacked.

• A system-mediated UI file picker doesn’t solve the case when a gallery
app wants to access *all • photos.

API: SystemXHR
Description: Allows anonymous (no cookies) cross-origin XHR without the
target site having CORS enabled.

Notes:

• Risk is leading attacks on websites behind firewalls, when the phone is
on an internal network.

• Whitelisting domains in the review process (too complicated for the user
to approve).

• Ideally, WebSocket, WebRTC and CORS should replace TCP/UDPSocket
and SystemXHR.

The following APIs are either privileged or certified but work is underway to
try to expose (parts of them) to the web based on partner and app developer
requests for functionality.

Work in progress

Mozilla is currently working to expose the following APIs to Privileged Apps:

• Devices
• NFC
• Bluetooth
• Wi-Fi (requested, but not priority)
• WebSerial (requested, but not priority)
• App embedding
• Lockscreen (to allow for replaceable lockscreens)
• Homescreen-webapps-manage (to allow for replaceable homescreens)
• Firefox-accounts (allow for device wide sign-in)

Other controls are currently in progress or in discussion:

• Allowing user auditing of API access:
◦ One feature which is currently in progress is allowing users to

monitor data usage on a per-application basis. This control could
be employed for any API where resource consumption is a
security concern (disk space, battery etc).

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 73 of 298

https://groups.google.com/forum/#!topic/mozilla.dev.webapps/WKZpY3MrCaA
https://developer.mozilla.org/en-US/docs/Web/API/Device_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest#mozSystem

• Improving the UX by giving the user more power and information by:
◦ Tying permissions to actual actions which would be meaningful

for the user to better inform about the impact of granting the
permission requested by an app.

◦ Requiring SSL as a mandatory control.

Claes Nilsson: Trusted hosted apps for FFOS - Sony research project

The dynamic nature of hosted web apps compared to installed web apps is
advantageous in many aspects. Sony is evaluating how sensitive APIs could
be opened up not only for installed privileged and pre-installed certified FFOS
apps but also for hosted web apps. The model is based on using the existing
web security mechanisms secure transport and Content Security Policies
(CSP).

The model is described below:

1. Content and manifest are downloaded to the device with ssl/tls, i.e.
server authentication, encryption and integrity protection.

2. Certificate pinning is used, which means that only certain specific
certificates are trusted, for example only certificates signed by Sony and
Mozilla are trusted.

3. Signature of trusted app's manifest must be verified by a trusted
authority

4. There is a CSP field in the manifest file. It is defined so that by default
only "self" is allowed, i.e. only content from the origin domain of the app
is allowed to download. It is also possible to whitelist other domains with
CSP that may be accessed through ssl/tls with certificate pinning. The
resources that are accessed through ssl/tls with pinning are script and
style src resources. (as declared in 'style-src' and 'script-src' directives
in CSP element of the manifest.)

In addition default security policies apply:

◦ Eval and related functions are disabled
◦ Inline JavaScript will not be executed

5. Trusted hosted apps are allowed to access a set of more sensitive APIs
than normal hosted apps.

Manifest example:

{
"name": ”Test app",
"description": ”Test of trusted hosted apps",
"version": "1.0",

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 74 of 298

"type": "trusted",
"launch_path": "/index.html",
"icons": { "16": "/favicon.ico" },
"developer”: { "name": ”Developer Team",

"url": "http://devloper.com" },
"csp" : "script-src ’self’ https://.123.testfront.net;

style-src 'self’ https://123.testfront.net",
"permissions": {

"device-storage:videos":{ "access": "readonly" },
"device-storage:pictures":{ "access": "readwrite" }

},
"appcache_path": "/manifest.appcache"

}

Mozilla permissable table example (“trusted” is the additional
application type “trusted hosted web applications)::

"device-storage:pictures": {
app: DENY_ACTION,
trusted: PROMPT_ACTION,
privileged: PROMPT_ACTION,
certified: ALLOW_ACTION,
access: ["read", "write", "create"]

},
"device-storage:videos": {

app: DENY_ACTION,
trusted: PROMPT_ACTION,
privileged: PROMPT_ACTION,
certified: ALLOW_ACTION,
access: ["read", "write", "create"]

},

Further information about the project

Stefan Håkansson: “Trusted Service Worker/Provider“ - Ericsson
research concept

Gives regular web apps access to extended functionality. Extended
functionality requires access to privileged APIs (not exposable to web
application for security reasons).

A Provider runs trusted code (JavaScript) from a third party, it has access to
selected privileged APIs and can formulate consent questions that make sense
to users. It executes in a separate context and exposes its own API towards
web applications using web messaging (postMessage).

Enables new APIs to be built on top of privileged APIs, in a way that allows
them to be securely exposed to web apps.

A Provider runs in a new type of Worker - ProviderWorker and exposes its own
API towards web applications via web messaging. Differs from Web Workers in
that it:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 75 of 298

https://bugzilla.mozilla.org/show_bug.cgi?id=1016421

• Can only execute code from trusted sources
• Gets its origin from the Provider publisher
• Access to selected privileged APIs

A manifest is used (Title, description, permissions, …)

The Provider (having access to privileged APIs) must be distributed by an app
store (code reviewed etc.)

More details are in Stefan's presentation on Web Providers.

Vadim Draluk: GM focus on web and automotive:

While General Motors had announced its own HTML-based development
platform a while back, strategically it is looking forward to emergence of
a more standardized environment for Web applications that would facilitate
build-up of an ecosystem suitable for automotive environment, among other
verticals. As a result, GM has joined the W3C Automotive Business Group, and
has been active in its proceedings. One of the issues that came up within that
group was permissions and security model. The group decided that it would be
highly beneficial to have such a model defined within W3C horizontally, such
as the same one could apply to all verticals, automotive included.

There are some aspects that differentiate automotive industry requirements.
First, the most typical deployment models are installed and installed-projected
(that is, installed on a phone that is projecting its screen onto the IVI display),
less so hosted. The reason is that, mostly due to security concerns, browsers
are not installed in the IVI systems. However, attracting Web developers
remains an important objective, hence the bias towards installed JavaScript/
HTML apps. We do realize that the focus of the SysApps WG is currently on
hosted use cases. However we believe it is possible to introduce a model which
will be applicable to both modes, so that some of the [less entrenched] JS
runtimes could choose to adopt it.

Another industry-specific consideration, related to permissions but not exactly
equivalent to them, is business sensitivity of some automotive signals, and
hence APIs that are used to access them. Thus the notion of “licensed” APIs,
ones that are available based on some external arrangements to some apps
but not others, is a concept widely accepted by automotive OEMs. This is
already reflected in Availability APIs that are part of the automotive spec,
currently under a public review. Our belief is that it should be possible to cover
this notion under a comprehensive permissions system, though we are equally
comfortable with leaving it within the automotive vertical

Here’s a link to a doc page that describes QNX’s current approach vis-à-vis
permissions:

I believe all their apps are installed, not hosted

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 76 of 298

ttp://www.qnx.com/developers/docs/qnxcar2/index.jsp?topic=%2Fcom.qnx.doc.qnxcar2.hmi%2Ftopic%2Fhmi_authman.html
ttp://www.qnx.com/developers/docs/qnxcar2/index.jsp?topic=%2Fcom.qnx.doc.qnxcar2.hmi%2Ftopic%2Fhmi_authman.html

Dom: I guess the hope had been that these independently developed solutions
to the permissions problem could converge in a standard approach. But that
seems unlikely to succeed now.

B.1.4. Session 5: What lessons come out of academic studies

• Research project : Towards Comprehensible and Effective Permission
Systems by Adrienne Porter Felt

• User-Driven Access Control: Rethinking Permission Granting in Modern
Operating Systems, Roesner, et al.

Adrienne's hexagon diagram was warmly received (Figure 8.1 in her
dissertation)

This provides a decision graph for determining the most appropriate
permission granting mechanism for a given capability: {automatic grant,
trusted UI, confirmation dialog, install time warning}. The criteria include:

• Can the action be undone with minimal effort?
• If abused is the action just an annoyance?
• Did the user initiate the request?
• Can the action be altered by the user?
• Does it need to work without immediate user approval?

Two things to be added to the diagram:

1. The degree to which the capability is explainable to the user
2. How the capability will be used by the application

If understandable, is there any point in the app explaining what it wants it for
(and how to trust that info).

Users want to know how a capability will be used instead of how it _can_ be
used. But evil apps would lie about the intended use anyway. UAs should have a
system for reporting apps that are abusing APIs/Capabilities. Basis for trust is
is related to how much an app is reviewed by e.g. an app store. Is the browser

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 77 of 298

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-185.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-185.pdf
http://research.microsoft.com/pubs/152495/user-driven-access-control-nov2011.pdf
http://research.microsoft.com/pubs/152495/user-driven-access-control-nov2011.pdf

the right tool for monitor the app behavior? Can be, but not specced by the
W3C. Malware agents outside the scope of W3C.

We discussed the role of trusted UI as a natural means for users to grant
permissions through user interaction, e.g. clicking on an icon of camera in
other to take a photo. The browser disables the UI and greys it out if anything
occludes its pixels. Likewise, the browser can apply a simple animation when
the UI control is initially displayed as a means to signify that the control
needs to be visible for a minimum period before it becomes active (analogous
to speed bumps in roads that force drivers to slow down). The browser also
needs to ensure user interaction with trusted UI controls can't be spoofed by
applications.

Trusted UI may give developers some control over the rendering, e.g. the color
palette or theme.

B.1.5. Session 6: Discussion of what considerations are
important for the OWP

Tailoring user experience. Put a lot of justification in the app before asking for
access to capabilities. Likewise, discovering when capability access has been
revoked to show a suitable UI. Standards may be needed here. Naming of
capabilities.

Result of this discussion may eventually be input to the WebApps WG work on
manifest.

Granularity: different questions what is available to developer vs. what is
presented to the user. Broad categories help for e.g. future proofing. What
about vendor specific extensions?

Capabilities needed will vary depending on area (automotive, health, ….), and
so may the permission model. But who should take care of future proofing?
W3C CSS has worked out in this respect.

Should we develop specs or design patterns? Should it be in IG, CG or WG?
Robin: does not really matter unless IPRs are in scope. Dom: Perhaps the Web
and Mobile IG could host the work. But more important: who will have the time
and interest to put in work?

Claes: can we produce anything normative? A lot is UI, difficult to be normative
about that. Can anything normative be put (referenced to) from the UDP/TCP
socket recommendation for example? There is a question if permission models
should be specced, for other specs to reference.

MS: I’d definitely like to cover patterns and practices, let’s see if we go beyond
that (depends on if we have well defined use cases. We might spec how the
developer declares how to spec the capabilities wanted (e.g. in a manifest). But
people need to bring that question back to their organisations.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 78 of 298

App store seem to be a central part, do we need app stores for the web? Broad
question, outside the scope of this meeting perhaps.

Implications of different approaches have for API design:

• Some APIs only useful in certain contexts. Mislabeling controls to fool
people.

• There should always be a failure callback (permissions may have been
revoked).

• Need to check if the app has permissions or not.
• May not be a need to involve the user at all.
• Should be uniform across APIs.

Comes down to allow the developer to provide the best user exp.

Do we need patterns for persistence (once, rest of session, forever, ….)? Up to
each UA, or something we should work on? Perhaps to default to per session.

B.2. THURSDAY, 4TH SEPTEMBER

We continue with the discussion of considerations we consider important for
permission handling in the OWP.

GMandyam: I think in order to focus the discussion on trust, we should leave
the discussion of app stores and the business processes they implement aside.
Appsigning as an indication of trust has worked well, and the client does
not have to have precise knowledge of the testing and validation that the
application may have undergone in obtaining its signature in order for
determining the level of trust in the application. Previous attempts at
standardization of the app store and developer ecosystem (e.g. WAC, OMA)
have not succeeded. The W3C should stay away from app store standardization
if it wants to make progress in the area of application trust. Adrienne: if the
browser uses heuristics to determine whether or not to grant permissions
automatically or to ask the user or just to block some capabilities, this could be
too surprising for users, and a potential pain for developers to figure out what
they need to do to avoid the user permission prompts.

What kind of framework would be needed to support this?

Dom: pre-declaring required permissions might help, but we would need to
look into the details, first.

John: we can’t avoid this problem if we are to give guidance to other groups.
There are likely to be different implementations from different vendors, but we
want to avoid the need for websites to have to apply different guidelines for
different browsers.

Kenneth: web intents (Wonsuk: Ask to Kenneth whether does this should be
replaced by Web components or not?) will complicate matters. (Claes: I think

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 79 of 298

that Kenneth referred to web apps composed by several web components
where the different components will require their permissions separately)

Adrienne: one case concerns trust across sites, the other is whether the
browser trusts a site.

Steven: the browser wouldn’t trust apps when they make requests outside of
their site

John: or more generally, controlled via CSP

Steven: issue when a developer makes a bad call when it comes to trusting 3rd
party sites

John talks about a range of heuristics that browsers could employ.
Fundamentally, we need some kind of delegated trust.

Adrienne: I agree. Otherwise iframes will need to ask for permissions
separately, confusing the user.

GMandyam: If the user is actively managing website permissions using the
browser chrome, then permission delagation needs to be managed accordingly.
For instance, if the end user has denied permission for x.com to get access to
the camera and then browses to y.com which tries to delagate permission back
to x.com, then the browser needs to manage permissions approriately (e.g.
blocking the delagated permission to x.com or prompting the user).

Stefan: sometimes you don’t trust the parent apps, but do trust the child app,
currently no way to deal with this effectively, e.g. users can’t see the URL for
the iframe.

Adrienne: users don’t understand apps which span websites.

John: in native world you can embed all kinds of stuff, e.g. maps, and you don’t
care where it comes from. If we want web apps to offer similar user experience,
we need to support some kind of trust delegation. In some cases it is okay for
transitive trust to apply.

John asks how this could apply to the web?

Wendy: difference in scale, between installed apps (relatively few) and
browsed-to websites. some questions around accountability and legal
attribution

Wonsuk: likely need for contractual relationships between apps and nested
apps around delegation of trust, and between app store vendor and app
developers

Some discussion around level of curation involved

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 80 of 298

(FYI: http://www.w3.org/wiki/File:Manifest-usecases.png)

Wendy: you can imagine a liability regime which provides an incentive for the
parent app developer to form contractual relationships or otherwise manage
the trustworthiness of the sites it depends on for its services. I’m not sure
we’re there today.

Kenneth: today we see concerns around security and payments that lead to
users being transferred from one site to another.

John talks about what it means to “install” (other trust gestures include
“pinning”, “bookmarking”) hosted apps when you could review the trust and
enable a more native like user experience as compared to sites you just visit
(drive by sites)

Steven: upfront declarations have some bearing on this. It helps developers to
think about what they are doing, and as well as helping with code review

Anssi: "pinning", "bookmarking", "installing" are trust gestures for keeping.
Another type of indirect trust indicator is e.g. the frecency algorithm. The
following is a brief extract from the document:

Frecency is a score given to each unique URI in Places,
encompassing bookmarks, history and tags. This score is
determined by the amount of revisitation, the type of those visits,
how recent they were, and whether the URI was bookmarked or
tagged. The word "frecency" itself is a combination of the words
"frequency" and "recency."

Steven: is there any value in W3C looking at using manifest for upfront
declarations as part of the delegation model?

John: the browsers could be doing a lot behind the scenes, there could be some
UI involved or none. My sense of the room is that some form of delegation is
valuable.

Wendy: before we leave trust and delegation, consider attribution trails/
provenance: keeping (and perhaps exposing in some way) the chain of trust
delegations.

Dave: when visiting arbitrary websites, the website itself could reference
endorsements by third parties that are generally deemed trustworthy, but it
is also interesting to consider active roles for 3rd party agents that monitor
at what you are visiting and can flag good/bad sites, independently of the
browser. This is already the case for the native world e.g. Lookout on android.

Dom: on native, the main app stores are operated by the same companies
that are distributing the operating systems; trusting the OS is necessary,
and extending that trust to the store, and implicitly to the apps these stores
distribute makes some kind of sense; on the Web, the basic trust level is in the

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 81 of 298

https://developer.mozilla.org/en-US/docs/Mozilla/Tech/Places/Frecency_algorithm

User Agent; and the User-Agent plays a role in protecting user data, but also
already goes a bit further than that by e.g. alerting the user on phishy web
sites, or sites that are known to have malware via centrally maintained Web
sites. Maybe there is more to be learned from that comparison, although we
clearly don’t want to the Web to become a closed/filtered ecosystem.

Adrienne: if there are many different ways for trust to accrue this could create
complexity for developers as they seek to control the user experience

Kenneth: could it make sense to the user to “pin” a site to grant it additional
permissions?

John: “pin” as a proxy for some gesture for indicating trust

Robin: “install” metaphor is easier for users to understand than pinning. That
could be implied by installing as a gesture

Wendy: it makes sense to have an explicit user-gesture to grant increased
permissions; should be something that users can easily understand

Adrienne: we’re going to see websites yelling at users to pin them just as now
they encourage users to install the site’s native app

Robin: this is likely to be a short lived problem as the ecosystem matures (and
3rd party endorsements take off). Also consider buckets of permissions.

We move on to the broad category of questions around permission
management

Dom: regarding indicators, we already know some specs (e.g. getUserMedia)
set requirements on how indicators are expected to behave (if there are
indicators); to me, this means we probably need to give guidance on whether
that’s a good a idea to set these requirements, and if it is, what requirements
might look like.

There are some existing W3C specs that call out for indicators but don’t specify
the user experience for that.

Dave: Is there a need to inform apps when the user revokes a permission, e.g.
to enable the app to dynamically adapt the user experience to match? i.e. by
handling events rather than having to poll.

John: similarly, changes in system capabilities, e.g. caused by the user
disconnecting something.

Kenneth: does native apps have a means to listen for such changes?

Steven: probably

John: it’s not clear how important this is, but I don’t want to rule it out just yet

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 82 of 298

Re privacy implications, we could drop a permission-denied signal and just
return a failure.

(Related specs and Links - security/privacy considerations and best practices)

• http://www.w3.org/TR/geolocation-API/#security
• http://dev.w3.org/geo/api/spec-source.html#security
• http://www.w3.org/TR/web-intents/#privacy-considerations
• http://www.w3.org/TR/service-workers/#security-considerations
• http://www.w3.org/TR/html-media-capture/#security
• http://www.w3.org/TR/telephony/#security-and-privacy-considerations
• http://www.w3.org/TR/2010/NOTE-dap-privacy-reqs-20100629/
• http://www.w3.org/TR/app-privacy-bp/

Kenneth: there is a difference between background (app running with window/
tab in the background) or when the app windows is closed and the app is
running as a system service (think Facebook Messages).

Giri: I agree, there is a difference between background as in service worker
and visibility

Dom: most native platforms provide a number of APIs whose access is very
limited (usually only to the OS maker or some device manufacturers); this
provides isolation of the most dangerous or hard to explain permissions; is
that something we want to extend to the Web, using e.g. Web Intents or an
approach based on registerProtocolHandler? Should W3C deal with APIs to
access these most limited APIs (as SysApps is currently chartered to do, e.g.
the telephony API)?

Wendy: 3d party reviewers can assess the use of more granular permissions,
give incentive to constrain access to what’s necessary

Lunch break and group photo, we resume at 13:30 French time

B.2.1. Session 7: Permissions-related API proposals

Adrienne introduced Mounir Lamouri's proposal for an API for developers to
test whether a given permission had been granted, denied or would result in a
prompt by the browser when the app tried to use the corresponding capability.

API Permissions articles/papers etc.:

• https://www.w3.org/wiki/Mobile/articles#API_Permissions Retired work
items from the Device APIs WG:

• http://dev.w3.org/2009/dap/perms/FeaturePermissions.html
• http://www.w3.org/TR/api-perms/ Permissions API proposal posted to

the public-webapps mailing list:
• https://docs.google.com/a/chromium.org/document/d/

12xnZ_8P6rTpcGxBHiDPPCe7AUyCar-ndg8lh2KwMYkM/preview

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 83 of 298

• (a similar proposal, but with mixins: https://github.com/w3c/push-api/
issues/3#issuecomment-43056068)

Steven: The four states I was referring to are:

1. Permission being sought and denied
2. Permission being sought and granted
3. Permission previously denied
4. Permission restricted

Giri: Are there still privacy considerations in exposing user preferences? {This
seemed to be an issue the last time that DAP considered a permissions API}
Could we reduce this concern by exposing “unavailable” rather than
distinguishing permission not granted from unavailable? Also suggested that
Mounir present this idea to PING to see if he can get some concrete feedback
on any privacy concerns.

Vadim: Automotive, “availabiity” API, we have different reasons for non-
availability, business, security, etc.

Adrienne: two different privacy considerations, fingerprinting

Wendy: Need to provide for the Tor browser use case: a browser that makes
settings uniformly to provide an anonymity set

Robin: fingerprinting is probably a lost cause, but in the browser engine, you
can detect sites doing too much investigation

Dave: look at ways the browser could protect you until the site is trusted; ways
for third parties to assess apps at either install or run-time.

See also Nick Doty’s work with the Privacy Interest Group

Wendy: Can we bring in revocability? Useful in the API, e.g. to offer user “try
this feature out for 30 min then automatically disable, unless you choose to
keep it” without going out to the browser chrome.

Kenneth: can we use the names of the APIs as the names for permissions?
Robin: yes, that was what we agreed yesterday

(Jonathan Jeon: we can reference from android case)

• http://developer.android.com/reference/android/
Manifest.permission.html

• http://developer.android.com/reference/android/
Manifest.permission_group.html

Steven: does the proposal include support for categories / groups of
permissions? Adrienne: no, not at the moment.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 84 of 298

http://w3c.github.io/fingerprinting-guidance/

Steven: still concerned about pre-flight request for permission. If dev has
permission, should only be because they’re using it. So why would you need
the “has permission”?

John: in some cases it may be indeterminate whether a prompt will be needed,
for instance, various factors may allow the browser to grant the permission
without needing to ask the user.

Slightly favour exposing information that “this feature is not available *or •
permission not granted” (it is not exposed to the web app whether this is due
to a permission setting or unavailability of the device) rather than returning
information“the feature is available *and* access to it has been granted”.
Don’t promote harassing the user with “come on, please please grant this
permission”

Steven: in principle, the user could disable a capability whilst the prompt for
the permission is present. This means that you can’t completely rely on the
returned value.

John: I am interested in the proposed API, but would like to see “prompt”
replaced by a value that denotes that it is indeterminate whether a prompt
would be invoked when attempting to use the associated capability.

We agree that we need names (strings) for permissions, e.g. for use in manifest
and when dealing with requests for multiple permissions, but these names can
be taken from the corresponding APIs, e.g. navigator.geolocation

B.2.2. Session 8: Plans for future work

(dom’s link) web permissions requirements matrix

Adrienne's diagram of a decision graph for permission mechanisms:

We agreed that the permission mechanisms need to be chosen according to
the capabilities involved. Adrienne's diagram is very helpful for explaining
some of the criteria involved. It would be valuable to provide guidelines on the

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 85 of 298

http://dontcallmedom.github.io/web-permissions-req/matrix.html

principles to W3C working groups that are defining standards for APIs. This
could be addressed by a W3C Community Group.

Trusted UI, that is embedded within web apps, is an promising area for further
study as it allows user actions to implicitly grant permissions in a natural way
without the need for the browser to prompt the user directly. The design of the
corresponding UI requires a good understanding of the use cases. This too is
something that could be addressed as part of a Community Group.

We agreed that trust delegation is essential to reducing the burden on users for
understanding permissions. This would also permit finer grained permissions
that make it easier for developers to only request the minimum capabilities
they actually need. We can expect innovation by browser vendors for heuristic
mechanisms for assessing apps and deciding when to ask the user and when
to automatically grant or deny particular permissions. There needs to be some
standards around how trusted third parties can endorse apps, especially for
hosted apps.

W3C needs to define standards for permission handling for hosted apps on the
Open Web Platform. Companies see a continuing need for packaged apps and
we shouldn't rule these out, despite the lack of interoperability for packaged
apps due to variations in APIs and packaging across vendors. We agree that
declaring permissions in an app manifest can be useful for people reviewing
apps, and as such facilitate trust in apps. A similar argument can be made
for app developers to provide richer descriptions of what the app is using
capabilities for. This information is aimed at reviewers and doesn't need to
be presented to end users. There is a risk of developers trying to mislead
reviewers, but this can be countered through having multiple independent
reviews and through innovations in reviewing practices and heuristic tools for
accessing apps.

We also liked the idea of enabling app developers to adapt the user experience
according to what permissions have been granted and are available as
capabilities. This could make it a little easier to finger print devices, but there
are already many ways in which to do so, and rather than worrying about
adding extra bits of finger printing information, it is more appropriate to
consider ways for browsers to apply heuristics to flag up apps that appear to be
using finger printing. Reviewers could then decide whether the app is behaving
reasonably given its stated purpose, or whether it is a rogue app.

There is further work to be done on the details of the permission models, for
example, whether developers have access to {granted, denied, prompt} for
permissions, or whether the permissions APIs should not distinguish between a
permission being denied, and the corresponding capability not being available.
The persistence model for permissions is expected to be an area where
browser innovation around trust is likely to make it hard to standardize in a
prescriptive way.

Areas of Rough Consensus on Work Items (and which groups)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 86 of 298

• Handling of trust delegation to iframes, web components (Adrienne)
(WebAppSec? (CSP) HTML? (doing sandbox already))

• Extension of manifest to declare permissions needed/features used
(WebApps WG)

◦ http://w3c.github.io/manifest/
• Permissions API proposal (WebApps WG (proposed there)? SysApps?

DAP (could already be in charter (Dom)? WebAppSec ? PING should
review)

◦ DAP Charter (http://www.w3.org/2011/07/DeviceAPICharter) has
the following work item in scope “An API for requesting and
managing user permissions to use device features”

• Review of APIs wrt how they handle permissions (Best Practices)
(Mobile Web IG? TAG? DAP? WebApp? (important: find somebody to do
the work (Adrienne interested) [Dom interested to help if not alone]))

◦ Dom’s review of existing APIs permissions in Mobile Web IG (but
really Dom only - Adrienne/Chrome have content to contribute)

◦ Document existing practices for permission handling
http://www.w3.org/TR/app-privacy-bp/

▪ http://lists.w3.org/Archives/Public/public-web-mobile/
2014Jan/0001.html

• Best practices for browser vendors (Microsoft, Google, Qualcomm
interested - CG?)

◦ not a normative document
◦ Dom’s review of existing APIs permissions also relevant here
◦ enterprise rules & policy
◦ Adrienne’s work (flowchart)
◦ helpful for partcipants to agree on best practices
◦ not necessarily read
◦ Trusted UIs, gadgets rather than prompts (Dave)

▪ researchy
• (Packaged apps not ruled out)

Areas where we are still some way apart but agree to work on closing
the gap

• (how about permission model ?)
• An interoperable way for indicating trust, e.g. endorsements for hosted

web apps (premature to determine group? put into CG above)
◦ Use cases to document what we want to achieve wrt trust

delegation
◦ Permissions on sensitive APIs (gemalto)

▪ standard way to represent endorsement as “trustworthy”
by some party (signature)

▪ like certificate authorities
▪ (some debate on whether this should be done)
▪ or signed webapp “packages”. not a CA

• (what considerations from mission critical case - web and automotive ?)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 87 of 298

B.2.3. Next Steps

The W3C staff are planning on a blog post to draw attention to the meeting at
its conclusions. A session will be held at TPAC to further encourage discussions
on next steps including the launch of the Community Group.

B.2.4. Addendum

Jonathan Jeon made the following suggestions after the meeting:

I didn't propose the issues during this meeting, but I think we need
to consider as below issues for future work.

• Wide scope permission issue on web app store ecosystem:

As we know well, Web app store will be a key component on
web app ecosystem. So if we want to make an open web app
ecosystem, we need to make the way for Open Web App Store
Federation. Web app store federation is also related with
app permission issue. The Web Application Store Community
Group has prepared some Requirements and Use Cases for
Open Web Application Store.

• Permission & APIs for system setting:

If we will make the permission APIs, it would be good to
consider the API for high level system setting. High level
setting API can be provide a simple interface to manage the
global system-level device preferences and setting. Here is a
proposal for a System Settings API.

Our thanks to Gemalto for hosting this meeting and to all those who
participated.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 88 of 298

http://www.w3.org/community/webappstore/
http://www.w3.org/community/webappstore/
http://hollobit.github.io/ows-req/
http://hollobit.github.io/ows-req/
http://hollobit.github.io/Settings/

C. MANIFEST FOR WEB APPS AND BOOKMARKS

W3C First Public Working Draft 17 December 2013

This version:
http://www.w3.org/TR/2013/WD-appmanifest-20131217/

Latest published version:
http://www.w3.org/TR/appmanifest/

Latest Editor's draft:
http://w3c.github.io/manifest/ (commit history)

Editors:
Marcos Caceres, Mozilla Corporation

Anssi Kostiainen, Intel Corporation

Kenneth Rohde Christiansen, Intel Corporation

Feedback?
We are on GitHub

File a bug

Copyright © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
W3C liability, trademark and document use rules apply.

C.1. ABSTRACT

This is a work in progress! For the latest updates from the Web Applications
(WebApps) Working Group possibly including important bug fixes, please look
at the draft on GitHub.

This specification defines a manifest, which provides developers with a
centralized place to put metadata about a web application. This includes,
amongst other things, the ability to specify the name of the web application,
links to icons, as well as the preferred URL at which the web application should
open when it is launched by the user.

With this metadata, user agents can provide, for example, enhanced
bookmarking capabilities such as being able to add a web application to the
homescreen of a device - as well as the various icons needed to effectively
integrate with an OS's task switcher and system preferences. The specification
also defines an API to enable bookmarking from within a document, as well
as a means to check if an application is running in a special mode called
"standalone".

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 89 of 298

http://www.w3.org/TR/2013/WD-appmanifest-20131217/
http://www.w3.org/TR/appmanifest/
http://w3c.github.io/manifest/
https://github.com/sysapps/manifest/commits/gh-pages
http://mozilla.org
http://intel.com
http://intel.com
https://github.com/sysapps/manifest
https://github.com/sysapps/manifest/issues
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://ev.buaa.edu.cn/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/2008/webapps/
http://www.w3.org/2008/webapps/
http://w3c.github.io/manifest/

This specification also defines the manifest link type, which provides a
declarative means for a web document to be associated with a manifest.

C.2. STATUS OF THIS DOCUMENT

This is a work in progress! This specification is for review and not for
implementation! For the latest updates, including important bug fixes, please
look at the draft on GitHub instead.

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.

Implementors should be aware that this specification is not stable.
Implementors who are not taking part in the discussions are likely to
find the specification changing out from under them in incompatible
ways. Vendors interested in implementing this specification before it
eventually reaches the Candidate Recommendation phase should join the
aforementioned mailing lists and take part in the discussions.

This document was published by the Web Applications (WebApps) Working
Group as a First Public Working Draft. This document is intended to become
a W3C Recommendation. If you wish to make comments regarding this
document, please send them to public-webapps@w3.org (subscribe, archives).
All comments are welcome. You can also File a bug.

Publication as a First Public Working Draft does not imply endorsement by
the W3C Membership. This is a draft document and may be updated, replaced
or obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress.

This document was produced by a group operating under the 5 February
2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures
made in connection with the deliverables of the group; that page also includes
instructions for disclosing a patent. An individual who has actual knowledge
of a patent which the individual believes contains Essential Claim(s) must
disclose the information in accordance with section 6 of the W3C Patent Policy.

C.3. TABLE OF CONTENTS

1. 1. Usage Examples . 91
1.1. 1.1 Example manifest . 91
1.2. 1.2 Example of linking to manifest . 92
1.3. 1.3 Example of using the API . 92
1.4. 1.4 Request adding to homescreen. 92

2. 2. Use cases and requirements . 93
3. 3. manifest . 93

3.1. 3.1 name member . 93

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 90 of 298

http://w3c.github.io/manifest/
http://www.w3.org/TR/
http://www.w3.org/2008/webapps/
http://www.w3.org/2008/webapps/
mailto:public-webapps@w3.org
mailto:public-webapps-request@w3.org?subject=subscribe
http://lists.w3.org/Archives/Public/public-webapps/
https://github.com/sysapps/manifest/issues
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/42538/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

3.2. 3.2 dont-share-cookies-and-stuff member 94
3.3. 3.3 url member . 94
3.4. 3.4 icons member. 95
3.5. 3.5 orientation member . 95
3.6. 3.6 mode member . 97
3.7. 3.7 Processing the manifest . 98
3.8. 3.8 Linking to a manifest . 98
3.9. 3.9 Proprietary extensions to the manifest 99

4. 4. Launching a standalone web application 100
5. 5. Icon object and its members . 100

5.1. 5.1 density member. 100
5.2. 5.2 width and height members . 100
5.3. 5.3 src member . 101
5.4. 5.4 type member . 101

6. 6. Extensions to the Navigator object . 101
6.1. 6.1 Attributes . 102
6.2. 6.2 Methods . 102

7. 7. Media type reregistration. 103
8. 8. Conformance . 104
9. A. Acknowledgments . 105
10. B. References . 105

10.1. B.1 Normative references . 105
10.2. B.2 Informative references . 106

C.4. 1. USAGE EXAMPLES

This section shows how the expected usage of the various features provided by
this specification.

C.4.1. 1.1 Example manifest

This section is non-normative.

The following shows a typical manifest.

Example 1: typical manifest

{
"name": "Example",
"url": "/start.html",
"mode": "standalone",
"icons": [{

"src": "icon/lowres",
"density": "1",
"width": "64",
"type": "image/webp"

}, {
"src": "icon/hd",
"density": "2",
"width": "64"

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 91 of 298

}]
}

C.4.2. 1.2 Example of linking to manifest

Example of using a link element to associate a website with a manifest. The
example also shows how HTML fallbacks, such as "application-name", can be
used to support legacy user agents that don't implement this specification.

Example 2: linking to a manifest

<!doctype html>
<html>
<head>
<title>The Best News - international</title>

<!-- link to bookmark metadata -->
<link rel="manifest" href="add_to_homescreen.json">

<!-- fallback metadata for legacy browsers -->
<meta name="application-name" content="Best News!">
<link rel="shortcut icon" src="favicon.ico">
</head>
...

C.4.3. 1.3 Example of using the API

Check if the application is running in standalone mode.

Example 3: detecting standalone mode

<script>
if("standalone" in navigator && navigator.standalone){

//Do standalone specific stuff...
document.documentElement.classList.add("standalone");

}
</script>

C.4.4. 1.4 Request adding to homescreen

Let the user bookmark the application through clicking a button.

Example 4: requesting to bookmark a web app

<script>
var installButton = document.querySelector("#install");

//Bookmarking only works if initiated by user interaction
installButton.addEventListener("click", function(e){

navigator.requestBookmark("path/to/bookmark.json")
.then(thankUser, stopBuggingUser);

});

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 92 of 298

</script>

<button id="install">
Bookmark Awesome App!

</button>

C.5. 2. USE CASES AND REQUIREMENTS

This document attempts to address the Use Cases and Requirements for
Installable Web Apps.

C.6. 3. MANIFEST

A manifest is a [JSON] document that consists of a top-level object that can
contain zero or more members, some of which contain other objects. Each of
the members, as well as how their values are processes, are defined below.

Algorithms in this specification use the conventions described in
[ECMASCRIPT], such as the use of steps and sub-steps, and so on. The
parseFloat method, ToString, HasOwnProperty, [[GetOwnProperty]], and
ToBoolean abstract operations, and the Type(x) notation referenced in this
section are defined in [ECMASCRIPT]. Processing also relies on various
algorithms defined in [HTML], [FETCH], and [URL].

As the manifest format is a [JSON] document, this specification relies on
the types defined in [JSON] specification: namely object, array, number, and
string. Strict type checking is not enforced by this specification. Instead,
each member's definition specifies the steps required to process a particular
member.

When an algorithm asks the user agent to issue a developer warning, the user
agent MAY report the conformance violation to the developer in a user-agent-
specific manner (e.g., show the problem in the error console), or MAY ignore
the error and do nothing

In the algorithms, to ignore means that the user agent MUST act as if the
developer had not declared the particular member in the manifest document.

C.6.1. 3.1 name member

The name is a string that represents the name of the application as is usually
displayed to the user (e.g., amongst a list of other applications, or as a label
underneath an icon).

The steps for processing the name of an application is given by the following
algorithm. The algorithm takes a manifest as an argument. It returns either
undefined, a string, or an error.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 93 of 298

http://w3c-webmob.github.io/installable-webapps/
http://w3c-webmob.github.io/installable-webapps/
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-parsefloat-string
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-tostring
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-hasownproperty
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-toboolean
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-ecmascript-data-types-and-values

1. If HasOwnProperty(manifest, "name") returns false, then return
undefined.

2. Let value be the result of calling the [[GetOwnProperty]] internal
method of manifest with argument "name".

3. If Type(value) is not "string", return an error.
4. Strip leading and trailing whitespace from result.
5. Return the result.

C.6.2. 3.2 dont-share-cookies-and-stuff member

Issue 1

Yes, this needs to be renamed. Possible candidates: "isolated" or "isolated-
security-origin", "independent"

The dont-share-cookies-and-stuff member is a boolean that allows a
developer to request that the user agent treat this web application as
independent from the one in the web browser. Effectively, this means that
cookies, storage, and permissions are not shared with the origin from which
the application was bookmarked. The value of this member is only applicable
to applications whose mode of operation is standalone.

The steps for processing the dont-share-cookies-and-stuff member is given
by the following algorithm:

1. Let value be the result of calling the [[GetOwnProperty]] internal
method of manifest with argument "dont-share-cookies-and-stuff".

2. Let result be the result of calling ToBoolean(value).
3. Return the result.

C.6.3. 3.3 url member

The url member is the URL that is loaded when the application is launched.
When it's missing from the manifest, the UA loads the URL from the manifest
was fetched.

The steps for processing the url member are given by the following algorithm.
The algorithm returns a URL.

1. If HasOwnProperty(manifest, "url") returns false, then return
undefined.

2. Let value be the result of calling the [[GetOwnProperty]] internal
method of the manifest with argument "url".

3. Let manifest URL be the URL from which the manifest was fetched from.
4. If value is undefined or Type(value) is not "string":

1. Let result be manifest URL.
5. Otherwise:

1. Parse value, using manifest URL as the base URL, and let result
be the result.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 94 of 298

http://www.whatwg.org/specs/web-apps/current-work/#strip-leading-and-trailing-whitespace
http://www.w3.org/html/wg/drafts/html/master/single-page.html#browsers
http://url.spec.whatwg.org/#concept-url
http://url.spec.whatwg.org/#parsing

6. Return result.

C.6.4. 3.4 icons member

The icons is a list of icon objects that represents a set of icons that the
application can make use.

The steps for processing the icons member are given by the following
algorithm. The algorithm returns a list of icons, which can be empty, or
undefined.

1. If HasOwnProperty(manifest, key) returns false, then return
undefined.

2. Let icons be an empty list.
3. Let manifest URL be the URL from which the manifest was fetched from.
4. Let value be the result of calling the [[GetOwnProperty]] internal

method of manifest with argument "icons".
5. If value is an array, then for each potential icon in the array:

1. Let src be the result of running the steps for processing the src
member of an icon. If the result is an error, stop processing this
potential icon and move to the next potential icon in value, if any.

2. Let type be the result of running the steps for processing the type
member of an icon.

3. If type is not a valid MIME type or the value of type is not a
supported icon format, then stop processing this potential icon
and move to the next potential icon, if any.

4. Let width be the result of running the steps for processing the
dimensions of an icon with "width" as the argument.

5. Let height be the result of running the steps for processing the
dimensions of an icon with "height" as the argument.

6. Otherwise, let icon be an object.
6. return icons.

C.6.5. 3.5 orientation member

Issue 2

This is issue 74 on GitHub. We are looking for feedback!

Orientation of an application is dependent on the media features of the display.
For example an application might need to be launched in landscape on phones
(in order to have sufficient display width), but prefer to be in portrait on
tablets. (see Orientation section in the use cases document).

When analyzing applications across various runtimes, we've found evidence
that such applications are common (e.g., basically any application on the
iPhone that has an iPad counterpart will be designed to constrain to a
particular orientation based on the device being used: LinkedIn, Flipboard,
GoodReads, etc. will all go from portrait-primary on the iPhone to allowing

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 95 of 298

http://www.whatwg.org/specs/web-apps/current-work/#valid-mime-type
https://github.com/w3c/manifest/issues/74
http://w3c-webmob.github.io/installable-webapps/#orientation

"any" orientation on the iPad. A more extreme example is BBC iPlayer - which
supports portrait-primary on the iPhone, but both landscape orientations on
iPad. The same can be seen on Android devices. Unlike native apps, Web Apps
should not target devices/OS's - they have to be device neutral.

In order to address the use cases, we currently have two proposals.

Option 1: Provide a list of orientation sets in the manifest. The user agent uses
the first one with a matching media query. The order in which the orientations
are listed by a developer does not imply a preference for setting the orientation
- it is always left up to the user agent to pick the best orientation given,
for example, how the user is holding the device. In the example below, no
orientation is given for widths of 721px or above, so the default is used:
allowing all orientations supported by the device.

{
"orientations": [{

"media": "max-width: 320px",
"supported": ["portrait-primary", "landscape"]

}, {
"media": "max-width: 720px",
"supported": ["landscape"]

}]
}

In this example:

• a device with a screen width of 320px or below would launch either
"portrait-primary" or "landscape" with the abilty to be "flipped"
depending on how the user is holding the device (and OS permitting).

• A device with a screen width of 321px through 720px would be launched
in landscape (leaving it up to the UA to pick either landscape-primary or
landscape-secondary, while allowing "flippability"),

• A device with a screen width of 721px and above would start in any
orientation chosen by the UA (ideally, one that matches how the user is
holding the device).

Option 2: The second proposal is to remove orientation from the manifest and
use CSS @viewport instead [css-device-adapt]. This would mean::

<head>
<style>

/*set it by default to portrait primary for small screens */
@media (max-width: 320px) {

@viewport {
orientation: portrait-primary, landscape;

}
}

/*Tablet, switch to landscape only*/
@media (max-width: 720px) {

@viewport {

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 96 of 298

orientation: landscape;
}

}

/*
similarly on screens with a width of 721px or more,
all orientations are allowed

*/
</style>
</head>

Problem with using @viewport at the moment is that the specification is
progressing a bit slowly and no one has implemented the "orientation"
descriptor. It also lacks definitions for "-primary" and "-secondary" contraints,
which are important for various applications, and doesn't currently allow
providing multiple allowed orientations - hopefully the CSS Device Adaption
spec can align with the Screen Orientation spec.

C.6.6. 3.6 mode member

The mode member represents that mode of operation in which the web
application will be launched. When the developer omits the value, the user
agent assumes the value "bookmark".

The mode of operation in which a web application can be launched include:

standalone
Once launched, the Web application appears indistinguishable from a
native application by allowing the OS to treat it as equivalent to a native
application.

bookmark
When launched, the user agent open the URL is normal (e.g., opens a new
tab, or a new window, or whatever it commonly does when instructed to
open a bookmark).

Standalone mode can also be displayed in the following view modes:

A valid application mode is one that conforms to the following [ABNF]:

mode = "bookmark" / "standalone" ["-" presentation]
presentation = "fullscreen"

The steps for processing the mode member of an icon are given by the following
algorithm. The algorithm returns a string.

1. Let value be the result of calling the [[GetOwnProperty]] internal
method of manifest passing "mode" as the argument.

2. Let result be "bookmark".
3. Strip leading and trailing whitespace from value.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 97 of 298

http://www.whatwg.org/specs/web-apps/current-work/#strip-leading-and-trailing-whitespace

4. If value is a valid application mode, set result to value.
5. Return result.

C.6.7. 3.7 Processing the manifest

The steps for fetching a manifest are given by the following algorithm. It takes
a url URL as an argument. It returns either a response (which may be in error).

1. Let response be the result of fetching the manifest from url.
2. Return response.

The steps to processing a manifest are given by the following algorithm. The
algorithm takes a text string as an argument.

1. Let manifest be the result of invoking the parse function of the JSON
object defined in [ECMASCRIPT] with text as its only argument. If
parsing throws an error, return the error and terminate this algorithm.

2. Let name be the result of running the steps for processing the name
member. If the returned value is undefined or an error:

1. Set name to be an implementation specific string that can serve
as a suitable name for the web application. For example, if the
manifest was obtained from a link element, and the document
has a meta element whose name attribute matches "application-
name", then the user agent could use the value of that meta
element's content attribute as a fallback. Otherwise, then the
document's title can be used. Alternatively, the user could be
prompted to provide a custom name using as a place holder.

3. Let mode be the result of running the steps for processing the mode
member. If processing returns an error, report the error, and set mode
to "bookmark".

4. Let orientation be the result of running the steps for processing the
orientation member.

5. Let url be the result of running the steps for processing the url member.
6. Let icons be the result of running the steps for processing the icons

member.
7. Optionally, ignore all other members.
8. Return response.

C.6.8. 3.8 Linking to a manifest

The manifest keyword can be used with a [HTML] link element. This keyword
creates an external resource link.

Effect on...
Link
type link a and

area
Brief description

manifest External
Resource

not
allowed

Imports or links to a
manifest.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 98 of 298

http://fetch.spec.whatwg.org/#concept-fetch
https://people.mozilla.org/~jorendorff/es6-draft.html#sec-json.parse
http://www.whatwg.org/specs/web-apps/current-work/#meta-application-name
http://www.whatwg.org/specs/web-apps/current-work/#meta-application-name
http://www.whatwg.org/specs/web-apps/current-work/#the-link-element
http://www.whatwg.org/specs/web-apps/current-work/#external-resource-link
http://www.whatwg.org/specs/web-apps/current-work/#external-resource-link
http://www.whatwg.org/specs/web-apps/current-work/#external-resource-link

The default media type for resources associated with the manifest link type is
application/manifest+json.

In cases where more than one link element with a manifest link type appears
in a document, the user agent MUST use the first inserted link element and
ignore all subsequent link elements with a manifest link type (even if the first
element was in error).

The appropriate time to fetch the manifest is when the external resource link
is created or when its element is inserted into a document, whichever happens
last. However, a user agent MAY opt to delay fetching a manifest until after the
document and its other resources have loaded (i.e., to not delay the availability
of content and scripts required by the document).

Certain error conditions can result in a manifest being treated as an invalid
manifest. An invalid manifest is one that is deemed to be non-conforming
in such a way that it would not be possible for the user agent to continue
processing (e.g., it can't be parsed by the JSON parser because of a syntax
error, it could be fetched from the network). In such a case, issue a developer
warning. In either case, when a step results in an invalid manifest the user
agent MUST abort whatever step or sub-step caused the condition.

To fetch a manifest, as user agent MUST:

1. If the link element lacks a href attribute, abort this algorithm.
2. Run the steps for fetching a manifest, with the value of href attribute as

the url, and let response be the response.
3. If response's type is "error", treat this as an invalid manifest.
4. Otherwise, let manifest be the result of running the steps for processing

a manifest.
5. If manifest results in an error, treat this as an invalid manifest.
6. Otherwise, in a user agent specific manner, and when the end-user so

desires, provide a means for the end-user to view the relevant contents
of the manifest; and provide a means for the end-user to create a
bookmark based on that information.

C.6.9. 3.9 Proprietary extensions to the manifest

This section is non-normative.

Although proprietary extensions are undesirable, they can't realistically be
avoided. As such, the RECOMMENDED way to add proprietary extension is to
use a vendor prefix.

This following is an example of two hypothetical vendor extensions.

Example 5: vendor extensions

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 99 of 298

http://www.whatwg.org/specs/web-apps/current-work/#linkTypes
http://www.whatwg.org/specs/web-apps/current-work/#the-link-element
http://www.whatwg.org/specs/web-apps/current-work/#the-link-element
http://www.whatwg.org/specs/web-apps/current-work/#external-resource-link
http://www.whatwg.org/specs/web-apps/current-work/#insert-an-element-into-a-document

{
...
"webkit-fancyfeature": "some/url/img",
"moz-awesome-thing": { ... }
...

}

C.7. 4. LAUNCHING A STANDALONE WEB
APPLICATION

When an application is launched:

1. If the web application has a required orientation, run the steps for
selecting the orientation.

C.8. 5. ICON OBJECT AND ITS MEMBERS

Each icon object represents an icon for an application suitable to use at some
dimensions and screen density.

C.8.1. 5.1 density member

The density member of an icon is the device pixel density for which this icon
was designed. The device pixel density is expressed as the number of dots
per 'px' unit (equivalent to a dppx as defined in [css3-values]). The value is a
positive number greater than 0. If the developer ommits the value, the user
agent assumes the value 1.

The steps for processing a density of an icon are given by the following
algorithm. The algorithm thanks an icon object as an argument and returns a
positive number.

1. Let value be the result of calling the [[GetOwnProperty]] internal
method of icon passing "density" as the argument.

2. Let result be the result of parseFloat(value);
3. If result is NaN, +0, −0, +∞, or −∞, or less than 0, return 1.
4. Return result.

C.8.2. 5.2 width and height members

The width and height members represent the natural width of the icon in
pixels. Their corresponding value is a positive number greater than 0.

The steps for processing a dimension of an icon are given by the following
algorithm. The algorithm takes an icon and a key ('width" or "height") as an
argument. The algorithm returns a positive number, undefined, or an error.

1. If HasOwnProperty(icon, key) returns false, then return undefined.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 100 of 298

2. Let value be the result of calling the [[GetOwnProperty]] internal
method of icon passing key as the argument.

3. Let result be the result of parseFloat(value);
4. If result is NaN, +0, −0, +∞, or −∞, or less than 0, return undefined.
5. Return result.

C.8.3. 5.3 src member

The src member of an icon is a URL from which the icon can be fetched.

The steps for processing the src member of an icon are given by the following
algorithm. The algorithm takes a icon object as an argument and returns a URL
or undefined.

1. If HasOwnProperty(icon, "src") returns false, then return undefined.
2. Let value be the result of calling the [[GetOwnProperty]] internal

method of icon passing "src" as the argument.
3. Let manifest URL be the URL from which the manifest was fetched from.
4. Parse value, using manifest URL as the base URL, and let result be the

result.
5. return result.

C.8.4. 5.4 type member

The type member of an icon is a hint as to the media type of the icon. The
purpose of this member is to allow a user agent can ignore icons of media types
it does not support.

The steps for processing the type member of an icon are given by the following
algorithm. The algorithm takes an icon object as an argument, and returns
either string or undefined.

1. If HasOwnProperty(manifest,"type") returns false, then return
undefined.

2. Let value be the result of calling the [[GetOwnProperty]] internal
method of potential icon passing "type" as the argument.

3. If type(potential src) is not "string", return an error.
4. Strip leading and trailing whitespace from result.
5. return result.

C.9. 6. EXTENSIONS TO THE NAVIGATOR OBJECT

partial interface Navigator {
readonly attribute Boolean standalone;
Promise requestBookmark (optional DOMString url);

};

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 101 of 298

http://url.spec.whatwg.org/#parsing
http://www.whatwg.org/specs/web-apps/current-work/#strip-leading-and-trailing-whitespace

C.9.1. 6.1 Attributes

standalone of type Boolean, readonly
The standalone attribute provides a means for a developer to check if the
application is running in standalone mode. When getting, the user agent
MUST returns true if the application is running as standalone. Return
false otherwise.

C.9.2. 6.2 Methods

requestBookmark
When invoked, the user agent MUST run the steps to request to add
bookmark.

Parameter Type Nullable Optional Description

url DOMString ✘ ✔

Return type: Promise

The steps to request to add bookmark are given by the following algorithm.
The algorithm runs asynchronously and returns a Promise.

1. Let promise be a new Promise object and resolver its associated
resolver.

2. Return promise and run the remaining steps asynchronously.
3. If this method was not invoked as a result of explicit user action, then:

1. Let error be a new DOMException whose name is
"SecurityError".

2. Run resolver's internal reject algorithm with error as value and
terminate this algorithm.

4. If the document's mode of operation is "standalone":
1. Let error be a new DOMException whose name is "NotSupported".
2. Run resolver's internal reject algorithm with error as value and

terminate this algorithm.
5. Run the steps for fetching a manifest. If the response's type is "error":

1. Let exception name be "NetworkError".
2. If the response's termination reason is end user abort, set

exception name to "AbortError".
3. If the response's termination reason is timeout, set exception

name to "TimeoutError".
4. Let error be a new DOMException whose name is exception name.
5. Run resolver's internal reject algorithm with error as value and

terminate this algorithm.
6. Let boomark info be result of the steps for processing a manifest, with

response's body as the argument.
7. If boomark info is an error:

1. Run resolver's internal reject algorithm with error as value and
terminate this algorithm.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 102 of 298

http://dom.spec.whatwg.org/#securityerror
http://dom.spec.whatwg.org/#notsupportederror
http://dom.spec.whatwg.org/#networkerror
http://dom.spec.whatwg.org/#aborterror
http://dom.spec.whatwg.org/#timeouterror
http://fetch.spec.whatwg.org/#concept-response-body

8. Present bookmark info to the end user. If the end-user rejects the
request to add the bookmark:

1. Let error be a new DOMException whose name is "AbortError".
2. Run resolver's internal reject algorithm with error as value and

terminate this algorithm.
9. Run resolver's internal fulfill algorithm with undefined as value.

C.10. 7. MEDIA TYPE REREGISTRATION

This section contains the required text for MIME media type registration with
IANA.

The media type for a manifests is application/manifest+json.

If the protocol over which the manifest is transferred supports the [MIME-
TYPES] specification (e.g. HTTP), it is RECOMMENDED that the manifest be
labeled with the media type for a manifests.

Type name:
application

Subtype name:
manifest+json

Required parameters:
N/A

Optional parameters:
N/A

Encoding considerations:
Same as for application/json

Security considerations:

As the manifest format is JSON and will commonly be encoded using
[UNICODE], the security considerations described in [JSON] and
[UNICODE-SECURITY] apply. In addition, implementors need to impose
their own implementation-specific limits on the values of otherwise
unconstrained member types, e.g. to prevent denial of service attacks, to
guard against running out of memory, or to work around platform-specific
limitations.

Web applications will generally contain ECMAScript, HTML, CSS files,
and other media, which are executed in a sand-boxed environment. As
such, implementors need to be aware of the security implications for the
types they support. Specifically, implementors need to consider the security
implications outlined in the [CSS-MIME] specification, the [ECMAScript-
MIME] specification, and the [HTML] specification.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 103 of 298

http://dom.spec.whatwg.org/#aborterror

As web applications can contain content that is able to simultaneously
interact with the local device and a remote host, implementors need to
consider the privacy implications resulting from exposing private
information to a remote host. Mitigation and in-depth defensive measures
are an implementation responsibility and not prescribed by this
specification. However, in designing these measures, implementors are
advised to enable user awareness of information sharing, and to provide
easy access to interfaces that enable revocation of permissions.

As this specification allows for the declaration of URLs within certain
members of a manifest, implementors need to consider the security
considerations discussed in the [URL] specification. Implementations
intending to display IRIs and IDNA addresses found in the manifest are
strongly encouraged to follow the security advice given in [UNICODE-
SECURITY].

Applications that use this media type:
Web browsers

Additional information:
Magic number(s):

N/A

File extension(s):
.json, .manifest

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
The Web Applications (WebApps) Working Group can be contacted at
public-webapps@w3.org.

Intended usage:
COMMON

Restrictions on usage:
none

Author:
W3C's Web Applications (WebApps) Working Group.

Change controller:
W3C.

C.11. 8. CONFORMANCE

As well as sections marked as non-normative, all authoring guidelines,
diagrams, examples, and notes in this specification are non-normative.
Everything else in this specification is normative.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 104 of 298

http://www.w3.org/2008/webapps/
http://lists.w3.org/Archives/Public/public-webapps/

The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this specification are to be
interpreted as described in [RFC2119].

There is only one class of product that can claim conformance to this
specification: a user agent.

C.12. A. ACKNOWLEDGMENTS

This document reuses text from the WHATWG [HTML] specification as
permitted by the license of that specification. The [HTML] specification is
edited by Ian Hickson.

C.13. B. REFERENCES

C.13.1. B.1 Normative references

[ABNF]
D. Crocker; P. Overell. Augmented BNF for Syntax Specifications: ABNF.
January 2008. STD. URL: http://www.ietf.org/rfc/rfc5234.txt

[CSS-MIME]
H. Lie; B. Bos; C. Lilley. The text/css Media Type. 1 March 1998.
Informational. URL: http://www.ietf.org/rfc/rfc2318.txt

[ECMASCRIPT]
ECMA-262 ECMAScript Language Specification, Edition 6. Draft. URL:
http://people.mozilla.org/~jorendorff/es6-draft.html

[ECMAScript-MIME]
B. Hoehrmann. Scripting Media Types. 4 January 2006. Informational.
URL: http://tools.ietf.org/html/rfc4329

[FETCH]
Anne van Kesteren. Fetch. Living Standard. URL:
http://fetch.spec.whatwg.org/

[HTML]
Ian Hickson. HTML. Living Standard. URL: http://www.whatwg.org/specs/
web-apps/current-work/

[JSON]
D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON) (RFC 4627). July 2006. RFC. URL: http://www.ietf.org/rfc/
rfc4627.txt

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 105 of 298

http://www.ietf.org/rfc/rfc5234.txt
http://www.ietf.org/rfc/rfc5234.txt
http://www.ietf.org/rfc/rfc2318.txt
http://www.ietf.org/rfc/rfc2318.txt
http://people.mozilla.org/~jorendorff/es6-draft.html
http://people.mozilla.org/~jorendorff/es6-draft.html
http://tools.ietf.org/html/rfc4329
http://tools.ietf.org/html/rfc4329
http://fetch.spec.whatwg.org/
http://fetch.spec.whatwg.org/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt

[MIME-TYPES]
N. Freed; N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types (RFC 2046). November 1996. RFC. URL:
http://www.ietf.org/rfc/rfc2046.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels.
March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

[UNICODE]
The Unicode Standard. URL: http://www.unicode.org/versions/latest/

[UNICODE-SECURITY]
Mark Davis; Michel Suignard. Unicode Security Considerations. URL:
http://www.unicode.org/reports/tr36/

[URL]
Anne van Kesteren. URL Standard. Living Standard. URL:
http://url.spec.whatwg.org/

[css3-values]
Håkon Wium Lie; Tab Atkins Jr.; Elika Etemad. CSS Values and Units
Module Level 3. 30 July 2013. W3C Candidate Recommendation. URL:
http://www.w3.org/TR/css3-values/

C.13.2. B.2 Informative references

[css-device-adapt]
Rune Lillesveen. CSS Device Adaptation. 15 September 2011. W3C
Working Draft. URL: http://www.w3.org/TR/css-device-adapt/

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 106 of 298

http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/
http://www.unicode.org/reports/tr36/
http://www.unicode.org/reports/tr36/
http://url.spec.whatwg.org/
http://url.spec.whatwg.org/
http://www.w3.org/TR/css3-values/
http://www.w3.org/TR/css3-values/
http://www.w3.org/TR/css3-values/
http://www.w3.org/TR/css-device-adapt/
http://www.w3.org/TR/css-device-adapt/

D. THE APP: URL SCHEME

W3C Last Call Working Draft 29 May 2014

This version:
http://www.w3.org/TR/2014/WD-app-uri-20140529/

Latest version:
http://www.w3.org/TR/app-uri/

Editor's draft:
http://app-uri.sysapps.org/

Previous version:
http://www.w3.org/TR/2013/WD-app-uri-20130516/

Feedback:
public-sysapps@w3.org/ with subject line “[appuri] … message topic …”
(archives)

Editor:
Marcos Caceres, Mozilla Corporation

Repository:
We are on Github.

File a bug.

Commit history.

Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
W3C liability, trademark and document use rules apply.

D.1. ABSTRACT

This specification defines the app: URL scheme.

The app: URL scheme can be used by packaged applications to obtain
resources that are inside a container. These resources can then be used with
web platform features that accept URLs.

D.2. STATUS OF THIS DOCUMENT

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 107 of 298

http://www.w3.org/TR/2014/WD-app-uri-20140529/
http://www.w3.org/TR/app-uri/
http://app-uri.sysapps.org/
http://www.w3.org/TR/2013/WD-app-uri-20130516/
mailto:public-sysapps@w3.org/
http://lists.w3.org/Archives/Public/public-sysapps/
http://mozilla.com
https://github.com/sysapps/app-uri
https://github.com/sysapps/app-uri/issues
https://github.com/sysapps/app-uri/commits/gh-pages
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://ev.buaa.edu.cn/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/TR/

This document was published by the System Applications Working Group as
a Last Call Working Draft. If you wish to make comments regarding this
document, please send them to public-sysapps@w3.org (subscribe, archives).
All comments are welcome.

Publication as a Last Call Working Draft does not imply endorsement by the
W3C Membership. This is a draft document and may be updated, replaced
or obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress.

This document was produced by a group operating under the 5 February
2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures
made in connection with the deliverables of the group; that page also includes
instructions for disclosing a patent. An individual who has actual knowledge
of a patent which the individual believes contains Essential Claim(s) must
disclose the information in accordance with section 6 of the W3C Patent Policy.

This specification is a Last Call Working Draft. All persons are encouraged
to review this document and send comments to the public-sysapps mailing
list as described above. The deadline for comments is 24 June 2014.

D.3. TABLE OF CONTENTS

1. 1. app: URL . 108
2. 2. Instance identifier . 108

2.1. 2.1 Privacy Considerations . 109
3. 3. Fetching a resource from a container . 109

3.1. 3.1 Security considerations . 109
4. 4. Conformance . 104
5. A. Use Cases . 110
6. B. Examples . 110
7. C. Acknowledgments . 105
8. D. References . 105

8.1. D.1 Normative references. 105
8.2. D.2 Informative references . 106

D.4. 1. APP: URL

An app: URL is a [URL] that can be used by a packaged application to address
resources within its container (e.g., a .zip file).

D.5. 2. INSTANCE IDENTIFIER

The instance identifier is a string that uniquely identifies an instance of a
packaged application.

When the instance identifier is not provided by the developer, a user agent
MUST synthesize one. The structure and length of identifier represented by the

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 108 of 298

http://www.w3.org/2012/sysapps/
mailto:public-sysapps@w3.org
mailto:public-sysapps-request@w3.org?subject=subscribe
http://lists.w3.org/Archives/Public/public-sysapps/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/58119/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://lists.w3.org/Archives/Public/public-sysapps/

authority is application specific, but it MUST be suitable to use as a Document's
origin. See also privacy and security considerations.

D.5.1. 2.1 Privacy Considerations

This section is non-normative.

Using unique identifiers (e.g., a UUID) as an instance identifier can be
exploited by an adversary as a digital finger print. This can allow a developer
to, for example, restore cookies even if the user has cleared cookies from a
user agent. As such, if the user agent relies on unique identifiers as the host
component, then it should provide end-users with a means of regenerating
the authority component. For instance, A user agent can the regenerate the
instance identifier when the user clears the user agent's private data.

D.6. 3. FETCHING A RESOURCE FROM A CONTAINER

This section is non-normative.

To fetch a resource using the app: URL using a request request:

1. If request's method is not `GET`, or if origin does not match the instance
identifier for this application, return a network error.

2. Let path be the path of URL.
3. Let response be a response.
4. If attempting to access the resource at path results in an error (e.g.,

not found, the file is corrupt, locked, etc.), return a network error and
terminate this algorithm.

5. If request includes a `Range` header:
1. If the value of the `Range` header is a valid byte range [HTTP11]:

1. Set response body to be the data from path at the start and
end of `Range`.

2. Set response status to 206.
6. Otherwise, set the response body to be the data at path.
7. Set the response headers:

1. `Content-Length`, computed as per [HTTP11].
2. `Content-Type`, the MIME type of the resource at path computed

as per [SNIFF].
8. Return response.

D.6.1. 3.1 Security considerations

When fetching data from an app: URL, a user agent needs to make sure that
only files that were in the container can be accessed (i.e., those files should
be sand-boxed). User agents need to watch out for symbolic links (or similar)
inside a container, which can attempt to trick the user agent into accessing
files that are on other parts of the file system.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 109 of 298

http://tools.ietf.org/html/rfc4122
http://fetch.spec.whatwg.org/#concept-request
http://fetch.spec.whatwg.org/#concept-request-method
http://fetch.spec.whatwg.org/#concept-network-error
http://url.spec.whatwg.org/#concept-url-path
http://fetch.spec.whatwg.org/#concept-response
http://fetch.spec.whatwg.org/#concept-network-error
http://fetch.spec.whatwg.org/#concept-request-headers
http://fetch.spec.whatwg.org/#concept-response-body
http://fetch.spec.whatwg.org/#concept-response-status
http://fetch.spec.whatwg.org/#concept-response-body
http://fetch.spec.whatwg.org/#concept-response-headers
http://fetch.spec.whatwg.org/#concept-fetch
http://en.wikipedia.org/wiki/Symbolic_link

D.7. 4. CONFORMANCE

As well as sections marked as non-normative, all authoring guidelines,
diagrams, examples, and notes in this specification are non-normative.
Everything else in this specification is normative.

The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this specification are to be
interpreted as described in [RFC2119].

There is one class of product that can claim conformance to this specification:
a user agent.

A user agent is an implementation of this specification.

D.8. A. USE CASES

For developers, this specification attempts to address the following use cases:

1. Provide a URL scheme that is compatible with the features and security
model of [HTML], so that applications that are packaged can make full
use of web platform's capabilities. For example, the app: URL scheme
should be usable as a document's address so that it can serve as its
origin, and it should be compatible with APIs like [XHR].

2. Provide fetching model that constrains retrieval of files to a specific
container.

3. Provide an addressing scheme that is easy to work with - and that
developers are already accustomed to working with. The developer
should not be bothered as to whether they are using http:// or app://
- the Web's capabilities and APIs need to just work!

4. Support the ability to playback audio and video files within a packaged
web application, including the ability to seek without needing to load the
full resource.

D.9. B. EXAMPLES

The following example shows [HTML]'s window.location using then app:
URL.

Example 1

<!doctype html>
<script>
//Example using HTML's Location object
var loc = window.location;
console.log(loc.protocol === "app:"); //true
console.log(loc.host === "com.foo.bar"); //true
console.log(loc.href === "app://com.foo.bar/index.html"); //true
console.log(loc.origin === "app://com.foo.bar"); //true
console.log(loc.pathname === "/index.html"); //true

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 110 of 298

http://www.whatwg.org/specs/web-apps/current-work/#the-document's-address
http://www.whatwg.org/specs/web-apps/current-work/#origin

console.log(loc.hash === "#example"); //true
console.log(loc.port === ""); //true
</script>

This example shows an app: URL being resolved in [HTML].

Example 2

var img = document.createElement("img");

//the following setter triggers HTML's resolve algorithm
img.src = "example.gif";

//and the expected output:
console.log(img.src === "app://c13c6f30/example.gif") //true

//Append the image to the document
document.body.appendChild(img);
</script>

This example shows a resource within a packaged application being retrieved
over [XHR].

Example 3

function process() {
// process the resulting data

}

var xhr = new XMLHttpRequest();
xhr.onload = () => process(this.responseText);
xhr.open("GET", "playlist.json");
xhr.send();

This example shows how an app: URL can be used in conjunction with a HTTP
`Range` header to request a range of bytes from a file inside a package.

Example 4

var url = "sample.mp3";
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = "arraybuffer";
xhr.setRequestHeader('Range', 'bytes=100-199');
xhr.send();
console.log(Uint8Array(xhr.response).byteLength === 100);// true

D.10. C. ACKNOWLEDGMENTS

The bulk of the text in this specifications was derived from the Widget URI
scheme specification. The Systems Application working group acknowledge

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 111 of 298

http://www.whatwg.org/specs/web-apps/current-work/#resolve-a-url
http://www.w3.org/TR/widgets-uri/
http://www.w3.org/TR/widgets-uri/

the hard work of the Web Applications Working Group in laying down the
foundations for this specification.

D.11. D. REFERENCES

D.11.1. D.1 Normative references

[HTTP11]
R. Fielding et al. Hypertext Transfer Protocol - HTTP/1.1. June 1999. RFC.
URL: http://www.ietf.org/rfc/rfc2616.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels.
March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

[SNIFF]
Gordon P. Hemsley. MIME Sniffing Standard. Living Standard. URL:
http://mimesniff.spec.whatwg.org/

[URL]
Anne van Kesteren. URL Standard. Living Standard. URL:
http://url.spec.whatwg.org/

D.11.2. D.2 Informative references

[HTML]
Ian Hickson. HTML. Living Standard. URL: http://www.whatwg.org/specs/
web-apps/current-work/

[XHR]
Anne van Kesteren. XMLHttpRequest. Living Standard . URL:
http://xhr.spec.whatwg.org/

E. APPLICATION LIFECYCLE AND EVENTS

E.1. A SERVICE WORKERS EXTENSION
SPECIFICATION

W3C Editor's Draft 16 May 2014

This version:
http://www.w3.org/2012/sysapps/app-lifecycle/

Latest published version:
http://www.w3.org/TR/app-lifecycle/

Latest editor's draft:
http://www.w3.org/2012/sysapps/app-lifecycle/

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 112 of 298

http://www.w3.org/2008/webapps/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://mimesniff.spec.whatwg.org/
http://mimesniff.spec.whatwg.org/
http://url.spec.whatwg.org/
http://url.spec.whatwg.org/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://xhr.spec.whatwg.org/
http://xhr.spec.whatwg.org/

Editors:
Anssi Kostiainen, Intel
Kenneth Rohde Christiansen, Intel

Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
W3C liability, trademark and document use rules apply.

This specification extends ServiceWorkerGlobalScope [[!service-workers]]
with APIs for managing the lifecycle of an application and associated events.

E.2. INTRODUCTION

The extensions to the service worker global execution context defined in
this specification allow web developers to author applications that manage
the application lifecycle and react to system events. These capabilities allow
application developers to create applications that integrate closely with the
underlying system.

Using the APIs defined in this specification, an application is able to run
application logic independently of any user interface scripts and react to:

• Changes in the application lifecycle such as launch and terminate
(application events)

• Events sent by the system (system events)
• Scheduled wakeup calls

There is only one class of product that can claim conformance to this
specification: a user agent.

Implementations that use ECMAScript to implement the APIs defined in this
specification MUST implement them in a manner consistent with the
ECMAScript Bindings defined in the Web IDL specification [[WEBIDL]], as this
specification uses that specification and terminology.

E.2.1. Dependencies

This specification relies on the following specifications:

• Service Workers [[!service-workers]] (see also the ServiceWorker GH
repo)

• Task Scheduler [[!TASKSCHEDULER]]

E.3. TERMINOLOGY

The term JavaScript global environment refers to the global environment
concept defined in [[!ECMA-262]].

The EventHandler interface represents a callback used for event handlers as
defined in [[!HTML5]].

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 113 of 298

https://github.com/slightlyoff/ServiceWorker
https://github.com/slightlyoff/ServiceWorker
http://dev.w3.org/html5/spec/webappapis.html#event-handlers

The concepts queue a task and fire a simple event are defined in [[!HTML5]].

The terms event handlers and event handler event types are defined in
[[!HTML5]].

The ServiceWorkerGlobalScope interface is defined in [[!service-workers]]

The TaskScheduler interface is defined in [[!TASKSCHEDULER]].

E.4. USE CASES AND REQUIREMENTS

Below is a list of use cases derived from the initial input to the System
Applications Working Group Charter that were not addressed by the Runtime
and Security Model for Web Applications [[SYSAPPS-RUNTIME]] — a proposal
the group decided to obsolete due to lack of implementers' interest. Currently,
the domain initially covered by [[SYSAPPS-RUNTIME]] is split across multiple
specifications and the use cases compatible with the Web security model are
being addressed by a set of specifications: Application Lifecycle and Events
and its normative dependencies Service Workers [[!service-workers]], Task
Scheduler [[!TASKSCHEDULER]], and the Manifest for web applications
[[!appmanifest]]. The set of specifications is expected to grow over time to
cover more of the domain and use cases.

In the context of use cases, main document refers to a JavaScript global
environment.

E.5. A SINGLE ENTRY POINT TO THE APPLICATION

The main document is the main entry point of the application to the system.
When loading the main document, the runtime does not display it to the user.
If the application intends to show a user interface it has to create windows or
interact with the platform in other ways such as by using a notification system.

The runtime can unload the main document in certain circumstances, which
results in termination of the application. When the main document is not
executing any script, has no pending callbacks, and no open windows, the
runtime can decide to unload the main document. In addition, the runtime
unloads the main document in order to reduce resource consumption. For
example, after loading the main document and no window is visible, the
application can be terminated by the runtime.

E.6. BEHAVIOR ADAPTATION AT LAUNCH

This section is non-normative.

The runtime does not create any visible windows by itself when launching an
application. This is up to the application and is handled as part of the launch
event. When launched, the application will know the reason for the launch. The

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 114 of 298

http://dev.w3.org/html5/spec/webappapis.html#queue-a-task
http://dev.w3.org/html5/spec/webappapis.html#fire-a-simple-event
http://dev.w3.org/html5/spec/webappapis.html#event-handlers
http://dev.w3.org/html5/spec/webappapis.html#event-handler-event-type
http://www.w3.org/2012/09/sysapps-wg-charter.html
http://www.w3.org/2012/09/sysapps-wg-charter.html
http://lists.w3.org/Archives/Public/public-sysapps/2013Sep/0030.html

reason could be a scheduled wake up, a persistent event of interest or a direct
launch either by the system, another application, or initiated by the user. This
allows the application to act differently depending on the reason.

E.6.1. System Event-initiated Launch

The runtime starts the application for the purpose of delivering events from
the system. For example, a system-level service might ask an email application
to send an email on its behalf. To handle these cases, the runtime will listen to
system events in order to launch the main document in response to them.

An application subscribes to system events either at install time or at runtime.

E.6.2. Wakeup-initiated Launch

This section is non-normative.

An application can schedule itself for wake-up by scheduling a task. A task will
ensure that the application is running and that the launch event has been fired
at the main document before resolving the the task.

Note that in order to run a task at the scheduled time, the application can be
started a bit earlier.

E.7. TERMINATION SEQUENCE

This section is non-normative.

The runtime terminates the application if it becomes idle or in case of resource
constraints.

Before actual termination, the terminate event is sent, giving the application
the ability to clear up, store state and close windows. In case that the
application does not terminate within a given time, the runtime can consider
the application as too slow or hanging and has the ability to terminate it
immediately (forced termination). The application can save its state
periodically to protect against data loss, in such a case.

After the terminate event, or in case of forced termination, the runtime will
progress to actual termination, which at least includes closing all remaining
windows and unloading of the main document. What other resources the
runtime unloads is up to the implementation.

There is an exception as the application can receive a wakeup or a system
event while processing the terminate event. If this is the case, the terminate
event is followed by a terminate canceled event, as actual termination will not
happen.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 115 of 298

The runtime will avoid terminating an active, focused application if at all
possible. However, the runtime can terminate the application as a last resort
(e.g., due to resource exhaustion or bad behavior).

The runtime prevents an application from interfering with the application's
termination, e.g. event listeners or long-running scripts using APIs such as
Geolocation, setTimeout, XMLHttpRequest will not block the runtime from
terminating the application.

E.7.1. Application Events

This section is non-normative.

The runtime context associated with the main document can be launched
and terminated either by the user, another application, or by the system. The
system can decide to terminate an application as long as it is considered idle
(no visible views or connected message ports). In the case the application
received an event (or something similar, like a task was scheduled) while
processing the terminate event, the terminate canceled event will be fired
successively and the main document will stay active until considered idle
again.

Mozilla would like the Mozilla Push API to use a [model similar to what is
proposed in this spec].

When the application is launched, the launch event is fired with a reason
which can be of type pending event, scheduled or other. If the application
was launched in order to handle an event it subscribed to or in response to a
scheduled task, the type will be pending event and scheduled respectively. This
allows for the application to avoid creating any user interface not resulting
from the respective event handling.

Explain how the other reason is handled by application developers.

In the case the user or another application started the application, the reason
is set to other, allowing the main document to load the default user interface
and potentially a “screenshot” of the application while the main user interface
is being built in the background.

For handling application lifecycle, the application's main document can listen
to the events.

E.8. SYSTEM EVENTS

This section is non-normative.

A system event is an event sent by the system. This event type does not
originate from the DOM itself and thus lives outside of the main document's
lifetime. A system event can wake up a terminated application. An

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 116 of 298

https://developer.mozilla.org/en-US/docs/WebAPI/Simple_Push

implementation can also allow a system event to wake up the system from
sleeping.

A typical browser-driven use case for system events is an email application that
wants to show a desktop notification when a push notification is received so
the user is informed that there are new emails even though the tab in which
the email application was running has been closed.

System events are applicable to event types that fire at low frequency and
support filtering. For example, they are not appropriate for user interaction
events that require a visible user interface or fire frequently.

When an application is launched in response to a system event, its main
document is loaded, a launch event is dispatched, and immediately after the
launch event, the system event handler is called. If the application did not
register the listener as part of the launch event, nothing happens.

To register for system events, need an event handler that is triggered when
the application is first installed, the application is updated, or the runtime is
updated to a new version ("oninstalled" or similar). Registration through the
Manifest would be beneficial too.

E.8.1. Filtered Events

This section is non-normative.

Filtered events are a mechanism that allows listeners to specify a subset of
events that they are interested in. A listener that makes use of a filter is not
invoked for events that do not pass the filter, which makes the listening code
more declarative and efficient.

To prevent an application from being woken up for no reason, filtering happens
in the runtime and not in an application.

The difference between "persistent" and "regular" DOM events must be made
obvious so that developers do not expect regular DOM events to behave
similarly.

E.8.2. Event Registration

This section is non-normative.

When an application subscribes to an event, it will be subscribed to it until it is
unsubscribed, the application is uninstalled, updated or terminated.

The listeners only exist in the context of the main document. Event listeners for
system events need to be registered each time the main document is launched
after termination.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 117 of 298

E.9. CREATING WINDOWS

This section is non-normative.

One or more windows might be created from the main document. These
windows are directly scriptable by the main document.

TODO: expand windowing use cases in a separate specification if needed.

E.10. REQUIREMENTS

Below is a summary of requirements derived from the above use cases:

1. An application (e.g. a background service) MUST be able to run without
visible user interface.

2. An application MUST be able to decide when to show the user interface,
if at all. It is up to the application developer to decide when it is
appropriate to show the user interface.

◦ An application MUST be able to show the user interface only after
it is fully constructed with the right dimensions and all the needed
data has been loaded.

3. The runtime model MUST support authoring an application (or a service
without user interface) that can be terminated without user’s consent,
and that is able to restore to its previous state.

4. After being launched, an application MUST be able to execute scripts to
recreate its state before recreating the actual user interface.

5. An application MUST be able to show a different user interface given
how the app was launched.

◦ For example, if launched as a photo picker, the application will not
show the default application window, but instead creates a special
purpose user interface.

6. The runtime MUST provide a mechanism to prevent an application from
being launched unnecessarily.

◦ As the system events can result in launching dormant apps, it
is important that that only happens for subscribed events which
support pre-filtering. For example, if an application listens to a
"USB plugged" event, it can additionally ask to only listen to a
specific device connected or a specific port.

7. The application MUST be able to enumerate windows associated with it,
and create new windows.

8. The application MUST be able to create a window and have it laid out
correctly with the right dimensions before being shown.

◦ This allows emulating the splash screen/application screenshot at
launch for any screen size, before loading any application logic,
so that the screenshot is not needed to be part of the manifest.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 118 of 298

E.11. APIS AVAILABLE TO SERVICE WORKERS

An environment through which the interfaces defined in this specification are
exposed to JavaScript is referred to as the service worker global execution
context (also referred to as the global execution context of a Service Worker
in [[!service-workers]]) whose global object is referred to as service worker
global scope.

E.11.1. Extensions to the ServiceWorkerGlobalScope
interface

attribute EventHandler onlaunch

attribute EventHandler onterminate

attribute EventHandler onterminatecanceled

readonly attribute TaskScheduler taskScheduler

This is a (non-exhaustive) list of features ServiceWorkerGlobalScope inherits
from WorkerGlobalScope:

• navigator object
• location object (read-only)
• XMLHttpRequest() method

◦ If the JavaScript global environment is a worker environment, the
responseType of document is not supported as per [[XHR]].

• setTimeout()/clearTimeout() and setInterval()/clearInterval()
• applicationCache object
• importScripts() method
• Worker() method (spawning web workers)
• indexedDB object
• ...

Communicating with the service worker is done with explicit MessagePort
objects similar to shared workers. ServiceWorkerGlobalScope [[!service-
workers]] has a clients attribute, which represents a list of windows or
workers that match the service worker's origin and scope.
Remove features that do not have strong use cases and consider them in v2.
After implementation feedback, we can add features that appear to be lacking.
For example, reason in LaunchEvent, terminate and terminatecanceled are
proposed to be deferred to v2 without strong use cases.

When the application is launched, the user agent MUST queue a task to launch
the application.

When the application is terminated, the user agent MUST queue a task to
terminate the application.

When the application termination is canceled, the user agent MUST queue a
task to cancel the termination.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 119 of 298

The following are the event handlers (and their corresponding event handler
event types) that MUST be supported, as event handler IDL attributes, by all
objects implementing the ServiceWorkerGlobalScope interface:

event handler event handler event type

onlaunch launch

onterminate terminate

onterminatecanceled terminatecanceled

It would be nice to have a diagram that shows when all events are fired and
the order.

E.11.2. Launching the Application

readonly attribute DOMString reason

attribute DOMString reason

When the user agent is REQUIRED to launch the application, the user agent
MUST run the following steps:

1. Re-instantiate the pre-existing version of the service worker global
execution context, if any. Otherwise, establishing a new service worker
global execution context.

2. Create a LaunchEvent object and initialize it with the given name
launch.

3. Initialize the reason attribute to a value corresponding to a launch
reason as defined in the table below.

4. Dispatch the newly created LaunchEvent object at the
ServiceWorkerGlobalScope object.

reason
attribute

value
Description Times

[fired] When

pending-
event

The application is launched in response
to a system event it is listening to.

Zero
or
more.

scheduled The application is launched by the system
at the scheduled time.

Zero
or
more.

other Other reason.
Zero
or
more.

The pending-event, scheduled or other event types are confusing. This should
be implied by the event "class" or the event name.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 120 of 298

Need a mechanism for passing data to the service worker from the application
that launched it. Does Web Activities/Intents address the use case (in scope
for Web Intents Task Force), or is this addressed by e.g. passing the data in
LaunchEvent?

E.11.3. Terminating the Application

When the user agent is REQUIRED to terminate the application, it MUST run
the following steps:

1. Fire a simple event named terminate at the ServiceWorkerGlobalScope
object.

2. Spin the event loop for a user-agent-defined amount of time.
This is intended to allow the application to run scripts to persist state,
do clean up tasks before being terminated.

3. Close all the windows created by the service worker script.
4. Discard the service worker.

Need to make it clear that the service worker can be terminated only when
it is idling, all Promises resolved, all indexedDB transactions completed, no
Workers running etc. However, Badly behaving application that try to prevent
an application for being closed can be killed by the system similarly to
onunload.

E.11.4. Canceling the Termination

readonly attribute DOMString reason

attribute DOMString reason

When the user agent is REQUIRED to cancel the termination, the user agent
MUST run the following steps:

1. Cancel the already-running instance of the terminate the application
algorithm, if any.

2. Create an event that uses the TerminateCanceledEvent interface, with
the name terminatecanceled.

3. Initialize the reason attribute to a value corresponding to a terminate
cancellation reason as defined in the table below.

4. Dispatch the newly created TerminateCanceledEvent object at the
ServiceWorkerGlobalScope object.

reason attribute value Description Times [fired] When

- - - -

- - - -

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 121 of 298

http://www.w3.org/2009/dap/#webintents

E.12. ACKNOWLEDGMENTS

Thanks to everyone who have contributed to the Service Worker proposal that
provides primitives for this specification to build atop.

Some use cases are derived from Adam Barth’s execution model proposal
referenced in the System Applications Working Group Charter. Thanks to the
Chrome team for their experiments with Packaged Apps. Also special thanks
to Thiago Marcos P. Santos and Caio Marcelo de Oliveira Filho for their
comments.

Also, big thank you to all SysApps Toronto participants who reviewed the
proposal, sent feedback and participated in the task force session.

F. TASK SCHEDULER API

W3C Editor Draft — 13 October 2014

This version:
http://www.w3.org/2012/sysapps/web-alarms/

Participate:
public-sysapps@w3.org (archives)

File a bug

Latest published version:
http://www.w3.org/TR/web-alarms/

Latest editor's draft:
http://www.w3.org/2012/sysapps/web-alarms/

Previous versions:
http://www.w3.org/TR/2013/WD-web-alarms-20130205/

Editors:
Mahesh Kulkarni, Samsung Electronics, Co., Ltd,
mahesh.kk@samsung.com

Former Editors:
Christophe Dumez, representing Intel and Samsung Electronics (Until
January 2013 and mid-August 2014, respectively)

Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
W3C liability, trademark and document use rules apply.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 122 of 298

https://github.com/slightlyoff/ServiceWorker
http://www.w3.org/2012/09/sysapps-wg-charter.html
http://www.w3.org/2012/sysapps/web-alarms/
mailto:public-sysapps@w3.org?subject=%5Bweb-alarms%5D%20
http://lists.w3.org/Archives/Public/public-sysapps/
https://github.com/sysapps/web-alarms/issues/new
http://www.w3.org/TR/web-alarms/
http://www.w3.org/2012/sysapps/web-alarms/
http://www.w3.org/TR/2013/WD-web-alarms-20130205/
http://www.samsung.com/sec
mailto:mahesh.kk@samsung.com
http://www.intel.com/
http://www.samsung.com/sec
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://ev.buaa.edu.cn/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

F.14. ABSTRACT

This specification defines an API to schedule a task at a specified time. When
the indicated time is reached, the application that scheduled the task will
be notified via a functional event on a service worker. A task event will be
delivered to a service worker, regardless of whether the application is active on
user agent. Applications such as an alarm clock or an auto-updater may utilize
this API to perform certain action at a specified time.

F.15. TABLE OF CONTENTS

1. 1 Introduction
2. 2 Conformance
3. 3 Terminology
4. 4 Requirements
5. 5 Task Scheduler API

1. 5.1 Interface ServiceWorkerRegistration
2. 5.2 Interface TaskScheduler
3. 5.3 Interface ScheduledTask

6. 6 Events
1. 6.1 Event Handler
2. 6.2 The TaskEvent Interface
3. 6.3 Firing task event to service worker

7. References
8. Acknowledgments

F.16. 1 INTRODUCTION

This section is non-normative.

Example use of the ScheduledTask API for adding, getting and removing and
listening for the alarm clock use cases:

How to set an alarm 10 minutes from now?

// https://example.com/serviceworker.js
this.ontask = function(task) {

alert(task.data.message);
console.log("Task scheduled at: " + new Date(task.time));
// From here on we can write the data to IndexedDB, send it
// to any open windows, display a notification, etc.

}

// https://example.com/webapp.js
function onTaskAdded(task) {

console.log("Task successfully scheduled.");
}

function onError(error) {
alert("Sorry, couldn't set the alarm: " + error);

}

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 123 of 298

navigator.serviceWorker.ready.then(function(serviceWorkerRegistration) {
serviceWorkerRegistration.taskScheduler.add(Date.now() + (10 * 60000), {

message: "It's been 10 minutes, your soup is ready!"
}).then(onTaskAdded, onError);

});

How to get all the scheduled tasks whose time is in the future?

navigator.serviceWorker.getRegistration().then(function(registration) {
registration.taskScheduler.getPendingTasks().then(function(tasks) {

alert("There are " + tasks.length + " tasks set.");
}, function(error) {

alert("An error occurred getting the scheduled tasks.");
});

}, function(error) {
alert("An error occurred getting the scheduled tasks.");

});

How to remove a scheduled task?

navigator.serviceWorker.getRegistration().then(function(registration) {
var request = registration.taskScheduler.remove(id).then(function() {

alert("Task removed");
}, function(error) {

alert("Sorry, can't remove the task.");
});

}, function(error) {
alert("An error occurred getting the scheduled tasks.");

});

F.17. 2 CONFORMANCE

This specification defines conformance criteria for a single product: the user
agent that implements the interfaces that it contains.

Implementations that use ECMAScript to implement the APIs defined in this
specification MUST implement them in a manner consistent with the
ECMAScript Bindings defined in the Web IDL specification [WEBIDL], as this
specification uses that specification and terminology.

F.18. 3 TERMINOLOGY

A JSON-serializable object is an object that when serialized or stringified
conforms to the JSON Grammar as defined in [ECMASCRIPT].

The EventHandler interface represents a callback used for handling events as
defined in [HTML5].

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 124 of 298

http://www.w3.org/TR/WebIDL/#ecmascript-binding
http://dev.w3.org/2006/webapi/WebIDL/#idl-object
http://dev.w3.org/2006/webapi/WebIDL/#idl-stringifiers
http://dev.w3.org/2006/webapi/WebIDL/#idl-serializers
http://dev.w3.org/html5/spec/webappapis.html#eventhandler

The Promise interface provides asynchronous access to the result of an
operation that is ongoing, has yet to start, or has completed, as defined in
[ECMASCRIPT6].

The concepts queue a task, event handler IDL attribute and fire a simple event
are defined in [HTML5].

The concepts event and fire an event named eare defined in [DOM].

The terms event handler and event handler event types are defined in
[HTML5].

Service worker, service worker registration, ServiceWorker,
ServiceWorkerRegistration, ServiceWorkerGlobalScope, ExtendableEvent, and
Handle Functional Event are defined in [SERVICE-WORKERS].

F.19. 4 REQUIREMENTS

Below is a summary of requirements associated with this API:

1. An application must only be able to access its own scheduled tasks.
2. A scheduled task identifier must be unique within the application origin.
3. A scheduled task must persist if the system is restarted.
4. A scheduled task must actively wake the system if the scheduled time is

reached while sleeping.
5. A scheduled task that was missed (e.g. because the device was off or the

clock jumped past it) should be fired as soon as possible.
6. A scheduled task and its associated data must be removed when the

application's service worker registration is uninstalled.

F.20. 5 TASK SCHEDULER API

This section is non-normative.

The task scheduler supports the following features:

• Web applications can schedule multiple tasks and get a returned ID for
each of them.

• Each ScheduledTask has a unique identifier that can be used to specify
and remove the scheduled task.

• Web applications can pass a JSON-serializable object to describe more
details about each task setting.

• When a scheduled time is reached, an task event is sent to the
application.

• ScheduledTask API actually does more than setTimeout() because it
can actively wake the system from sleeping and scheduled task are not
lost when closing the application or restarting the system.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 125 of 298

https://people.mozilla.org/~jorendorff/es6-draft.html#sec-promise-objects
http://dev.w3.org/html5/spec/webappapis.html#queue-a-task
http://www.w3.org/html/wg/drafts/html/master/webappapis.html#event-handler-idl-attributes
http://dev.w3.org/html5/spec/webappapis.html#fire-a-simple-event
https://dom.spec.whatwg.org/#concept-event
https://dom.spec.whatwg.org/#concept-event-fire
http://dev.w3.org/html5/spec/webappapis.html#event-handlers
http://dev.w3.org/html5/spec/webappapis.html#event-handler-event-type
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html#dfn-service-worker
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html#dfn-service-worker-registration
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html#service-worker-interface
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html#service-worker-registration-interface
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html#service-worker-global-scope-interface
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html#extendable-event-interface
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html#handle-functional-event-algorithm

F.20.1. 5.1 Interface ServiceWorkerRegistration

The Service Worker specification defines a ServiceWorkerRegistration
interface [SERVICE-WORKERS], which this specification extends.

partial interface ServiceWorkerRegistration {
readonly attribute TaskScheduler taskScheduler;

}

The taskScheduler attribute provides the developer access to a
TaskScheduler.

F.20.2. 5.2 Interface TaskScheduler

The TaskScheduler interface exposes methods to get, set or remove scheduled
tasks. ScheduledTasks are application specific, so there is no way to see the
tasks scheduled by other applications nor to modify them. Developers should
set an ontask event handler in the associated service worker to listen for the
task event when scheduled tasks should be executed.

interface TaskScheduler {
Promise getPendingTasks();
Promise add(DOMTimeStamp time, optional any data);
Promise remove(DOMString taskId);

};

When invoked, the getPendingTasks() method must run the following steps:

1. Make a request to the system to retrieve the tasks that were registered
by the current application and whose scheduled time is in the future.

2. Let promise be a new Promise object and resolver its associated
resolver.

3. Return promise and run the remaining steps asynchronously.
4. If an error occurs, run these substeps and then terminate these steps:

1. Let error be a new DOMException exception whose name is the
same as the error returned.

2. Run resolver's internal reject algorithm with error as value.
5. When the operation completes successfully, run these substeps:

1. Let tasks be a new array containing the ScheduledTask objects
that were retrieved.

2. Run resolver's intenal fulfill algorithm with tasks as value.

When invoked, the add(time[, data]) method must run the following steps:

1. Make a request to the system to schedule a new task for the current
application that will trigger at the given time (number of milliseconds
since the epoch). If the time argument is in the past, the task will
be executed as soon as possible, asynchronously. The system must
associate the JSON-serializable data with the task if provided.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 126 of 298

2. Let promise be a new Promise object and resolver its associated
resolver.

3. Return promise and run the remaining steps asynchronously.
4. If an error occurs, run these substeps and then terminate these steps:

1. Let error be a new DOMException exception whose name is
"QuotaExceededError" if the data argument exceeds an
implementation-dependent size limit, or whose name is the same
as the error returned otherwise.

2. Run resolver's internal reject algorithm with error as value.
5. When the operation completes successfully, run these substeps:

1. Let task be a new ScheduledTask object.
2. Set task's id attribute to the unique identifier returned by the

system for the newly registered task.
3. Set task's time attribute to the time argument.
4. Set task's data attribute to the data argument, if provided.
5. Run resolver's internal fulfill algorithm with task as value.

When invoked, the remove(taskId) method must run the following steps:

1. Make a request to the system to unregister the task with the given
unique taskId identifier.

2. Let promise be a new Promise object and resolver its associated
resolver.

3. Return promise and run the remaining steps asynchronously.
4. If an error occurs, run these substeps and then terminate these steps:

1. Let error be a new DOMException exception whose name is the
same as the error returned.

2. Run resolver's internal reject algorithm with error as value.
5. When the operation completes successfully, run these substeps:

1. Let removed be a boolean value.
2. Set removed to true if the task was removed, and to false if

there was no task with the given identifier.
3. Run resolver's intenal fulfill algorithm with removed as value.

F.20.3. 5.3 Interface ScheduledTask

The ScheduledTask interface captures the properties of a scheduled task.

interface ScheduledTask {
readonly attribute DOMString id;
readonly attribute DOMTimeStamp time;
readonly attribute any data;

};

The id attribute returns an identifier for the given ScheduledTask object that
is unique within the origin. An implementation must maintain this identifier
when a ScheduledTask is added.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 127 of 298

The time attribute is the time at which this task is scheduled to fire, in
milliseconds past the epoch (e.g. Date.now() + n). Due to performance, the task
may be delayed past this time.

The data attribute optionally represents the JSON-serializable data associated
with the task.

F.21. 6 EVENTS

The Service Worker specification defines a ServiceWorkerGlobalScope
interface [SERVICE-WORKERS], which this specification extends.

partial interface ServiceWorkerGlobalScope {
attribute EventHandler ontask;

};

F.21.1. 6.1 Event Handler

The following is the event handler (and its corresponding event handler event
type) that must be supported as attribute by the ServiceWorkerGlobalScope
object.

event handler event handler event type

ontask task

F.21.2. 6.2 The TaskEvent Interface

The TaskEvent interface represents a scheduled task.

interface TaskEvent : ExtendableEvent {
readonly attribute ScheduledTask task;

};

F.21.3. 6.3 Firing task event to service worker

A task event is fired when a scheduled task should be executed. The scheduled
task is originated from the system and will wake up a service worker if it is not
currently running.

When the scheduled task task went off by the system, the user agent must
(unless otherwise specified) run these steps:

1. Let callback be an algorithm that when invoked with a global, fires a
service worker task event named task given task on global.

2. Then run Handle Functional Event with task's service worker
registration and callback.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 128 of 298

https://html.spec.whatwg.org/multipage/webappapis.html#event-handlers
https://html.spec.whatwg.org/multipage/webappapis.html#event-handler-event-type
https://html.spec.whatwg.org/multipage/webappapis.html#event-handler-event-type
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/index.html#service-worker-global-scope-interface
http://www.whatwg.org/specs/web-apps/current-work/#event-handlers
http://www.whatwg.org/specs/web-apps/current-work/#event-handler-event-type

To fire a service worker task event named e given task, fire an event named e
with an event using the TaskEvent interface whose task attribute is initialized
to a new ScheduledEvent object representing task.

F.22. REFERENCES

[B2G-ALARM]
B2G Alarm API Specification, Mounir Lamouri, Kan-Ru Chen and Jonas
Sicking. Mozilla.

[DOM]
DOM, Anne van Kesteren, Aryeh Gregor and Ms2ger. WHATWG.

[ECMASCRIPT]
ECMAScript Language Specification. ECMA.

[ECMASCRIPT6]
ECMAScript Language Specification (6th edition, draft). ECMA.

[HTML5]
HTML5, Ian Hickson. W3C.

[SERVICE-WORKERS]
Service Workers, Alex Russell and Jungkee Song. W3C.

[WEBIDL]
Web IDL, Cameron McCormack. W3C.

F.23. ACKNOWLEDGMENTS

We would like to thank Kan-Ru Chen, Mounir Lamouri, Gene Lian and Jonas
Sicking for their work on the API design, as well as the WebAPI/B2G teams at
Mozilla [B2G-ALARM].

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 129 of 298

https://wiki.mozilla.org/WebAPI/AlarmAPI
http://dom.spec.whatwg.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://people.mozilla.org/~jorendorff/es6-draft.html
http://dev.w3.org/html5/spec/
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/
http://dev.w3.org/2006/webapi/WebIDL/

G. CONTACTS MANAGER API

W3C Editor's Draft 04 April 2014

This version:
http://www.w3.org/2012/sysapps/contacts-manager-uri/

Latest published version:
http://www.w3.org/TR/contacts-manager-uri/

Latest editor's draft:
http://www.w3.org/2012/sysapps/contacts-manager-uri/

Editors:
Eduardo Fullea, Telefonica
Jose M. Cantera, Telefonica
Christophe Dumez, Samsung Electronics, Co., Ltd

Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
W3C liability, trademark and document use rules apply.

This specification defines a System Level API which offers a simple interface
to manage user's contacts stored in the system's address book. A typical use
case of the Contacts API is the implementation of an application to manage
said address book.
This document defines a System Level API to manage the user's contacts that
are stored in the system's address book. Future versions of this specification
are expected to align the contact data model with the Contacts API being
defined by the Device APIs Working Group.

If you find any issue with this specification, please file a bug on Github.

G.1. INTRODUCTION

The Contacts API allows to manage (create, edit, remove, etc) user's contacts
stored in the system's address book, and thus provides the functionality needed
to implement an application to manage said address book.

An example of use is provided below:

var contactName = new ContactName({
givenNames: ['John'],
familyNames: ['Doe']

});
var mobilePhone = new ContactTelField({ types: ['home'],

preferred: true, value: '+34698765432' });
var contact = new Contact({

name: contactName,
phoneNumbers: [mobilePhone]

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 130 of 298

http://www.w3.org/TR/contacts-api
https://github.com/sysapps/contacts-manager-api/issues

});
navigator.contacts.save(contact).then(

function(contact) { window.console.log('Contact ' +
contact.name.givenNames[0] + ' ' +
contact.name.familyNames[0] + ' saved!'); },

function(error) { window.console.error('Error: ' + error); })

This specification defines conformance criteria that apply to a single product:
the user agent that implements the interfaces that it contains.

Implementations that use ECMAScript to implement the APIs defined in this
specification MUST implement them in a manner consistent with the
ECMAScript Bindings defined in the Web IDL specification [[!WEBIDL]], as this
specification uses that specification and terminology.

G.2. TERMINOLOGY

The EventHandler interface represents a callback used for event handlers as
defined in [[!HTML5]].

The concepts queue a task and fire a simple event are defined in [[!HTML5]].

The terms event handler and event handler event types are defined in
[[!HTML5]].

The Promise interface, the concepts of a resolver, a resolver's fulfill algorithm
and a resolver's reject algorithm are defined in [[DOM4]].

G.3. SECURITY AND PRIVACY CONSIDERATIONS

This API must be only exposed to trusted content

G.4. NAVIGATOR INTERFACE

readonly attribute ContactsManager contacts
The object that exposes the contacts management functionality.

G.5. CONTACTSMANAGER INTERFACE

The ContactsManager interface exposes the contacts management
functionality.

Promise find ()
This method allows to search contacts within the address book that match
the criteria indicated in the options parameter. It returns a Promise that
will allow the caller to be notified about the result of the operation.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 131 of 298

http://dev.w3.org/html5/spec/webappapis.html#eventhandler
http://dev.w3.org/html5/spec/webappapis.html#queue-a-task
http://dev.w3.org/html5/spec/webappapis.html#fire-a-simple-event
http://dev.w3.org/html5/spec/webappapis.html#event-handlers
http://dev.w3.org/html5/spec/webappapis.html#event-handler-event-type
http://dom.spec.whatwg.org/#promise
http://dom.spec.whatwg.org/#concept-resolver
http://dom.spec.whatwg.org/#concept-resolver-fulfill
http://dom.spec.whatwg.org/#concept-resolver-reject

optional ContactFindOptions options
Set of criteria that a contact needs to match to be included in the
outcomes of the find operation.

Promise clear ()
This method allows to remove all contacts in the address book. It returns
a Promise that will allow the caller to be notified about the result of the
operation.

Promise save ()
This method allows to save a contact in the address book, e.g. an existing
contact after having been edited. So if a contact with the same identifier,
i.e. id, already exists in the address book, it will be updated. It returns
a Promise that will allow the caller to be notified about the result of the
operation.
Contact contact

The Contact object that is requested to be saved in the address book.

Promise remove ()
This method allows to remove a contact from the address book. It returns
a Promise that will allow the caller to be notified about the result of the
operation.
DOMString contactId

The identifier of the Contact object that is requested to be removed
from the address book.

attribute EventHandler oncontactschange
May be used to set an event handler to be called when contacts are added,
deleted or changed in some way.

The find method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver.

2. Return promise and continue the following steps asynchronously.
3. Make a request to the system to retrieve the contacts in the address

book matching the criteria indicated in the options parameter.
4. If there is an error invoke resolver's reject algorithm with no argument

and terminate these steps.
5. When the request has been completed:

1. Let contacts be a new array of Contact objects providing the
results of the find operation.

2. Invoke resolver's fulfill algorithm with contacts as the value
argument.

The clear method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver.

2. Return promise and continue the following steps asynchronously.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 132 of 298

3. Make a request to the system to clear all the contacts in the address
book.

4. If there is an error invoke resolver's reject algorithm with no argument
and terminate these steps.

5. When the request has been completed invoke resolver's fulfill algorithm
with no argument and terminate these steps.

The save method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver.

2. Return promise and continue the following steps asynchronously.
3. Make a request to the system to save in the address book the Contact

object passed as parameter.
4. If there is an error invoke resolver's reject algorithm with no argument

and terminate these steps.
5. When the request has been completed:

1. Let contact be the Contact object as returned by the system,
and which therefore has its id and lastUpdated parameters set,
whereas they could be null in the original Contact object passed
as parameter, for instance if it is a brand new Contact object not
yet stored in the address book.

2. Invoke resolver's fulfill algorithm with contact as the value
argument.

The remove method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver.

2. Return promise and continue the following steps asynchronously.
3. Make a request to the system to remove the Contact object identified by

the contactId passed as parameter from the address book.
4. If there is an error invoke resolver's reject algorithm with no argument

and terminate these steps.
5. When the request has been completed invoke resolver's fulfill algorithm

with no argument and terminate these steps.

Upon a change in a contact or set thereof is performed (i.e. contact(s) added
/ modified / removed) the system MUST fire a simple event named
contactschange that implements the ContactsChangeEvent interface at the
ContactsManager object

G.6. EVENT HANDLERS

The following are the event handlers (and their corresponding event handler
event types) that MUST be supported as attributes by the ContactsManager
object:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 133 of 298

event handler event handler event type

oncontactschange contactschange

The event named contactschange MUST implement the ContactsChangeEvent
interface.

G.7. CONTACTFINDOPTIONS DICTIONARY

The ContactFindOptions dictionary represents the criteria used to select the
contacts to be returned by a find operation.

DOMString value
Represents the value used for the filtering (e.g. "Tom").

FilterOperator operator
Represents the filtering operator used for the filtering.

sequence<DOMString> fields
Represents the set of fields in which the search is performed (e.g.
"givenName").

sequence<DOMString> sortBy
Represents the fields by which the results of the search are sorted (e.g.
["givenNames", "familyNames"]). The results are sorted by the first field,
then by the following one, if present, and so on.

SortOrder sortOrder
Represents the order in which the results of the search are sorted.

unsigned long resultsLimit
Represents the maximum number of results that can be returned by the
search operation.

G.8. ENUMERATIONS

There are 2 possible filter operations:

contains
With this operation, a contact will be returned if its filtered field contains
the given value.

is
With this operation, a contact will be returned if its filtered field matches
exactly the given value.

The returned contacts can be sorted in one of the following orders:

ascending
The contacts will be sorted in ascending order.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 134 of 298

descending
The contacts will be sorted in descending order.

It is for further study whether the level of flexibility of the filters needs to
be increased and/or additional mechanisms need to be put in place so that
applications can keep a local copy of the address book and perform the filtering
locally (e.g. startTrackingChanges() and getNewChanges() methods)

G.9. CONTACTFIELD INTERFACE

The ContactField interface represents a user's attribute and the types
associated to it.

attribute DOMString[] types
Indicates the types of this contact field (e.g. "home", "work").

attribute boolean preferred
Indicates whether this is the preferred contact field.

attribute DOMString value
A string that contains the user's address.

G.9.1. ContactFieldInit Dictionary

sequence<DOMString> types

boolean preferred

DOMString value

G.10. CONTACTTELFIELD INTERFACE

The ContactTelField interface represents a telephone number as well as
metadata associated to it, namely the types (e.g. "voice", "text") and the carrier
providing service to the telephony subscription associated to that number.

attribute DOMString? carrier
Indicates the carrier providing service to the telephony subscription
associated to that number

G.10.1. ContactTelFieldInit Dictionary

DOMString carrier

G.11. CONTACTADDRESS INTERFACE

The ContactAddress interface represents a user's physical address and the
types associated to it. This interface is based on vCard 4.0 ADR attribute.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 135 of 298

http://tools.ietf.org/html/rfc6350

attribute DOMString[] types
Indicates the types of this contact field (e.g. "home", "work").

attribute boolean preferred
Indicates whether this is the preferred contact field.

attribute DOMString streetAddress
A string that contains the name of the street. It maps to the third
component in vCard's ADR attribute.

attribute DOMString locality
A string that contains the name of the locality. It maps to the forth
component in vCard's ADR attribute.

attribute DOMString region
A string that contains the name of the region. It maps to the fifth
component in vCard's ADR attribute.

attribute DOMString postalCode
A string that contains the postal code. It maps to the sixth component in
vCard's ADR attribute.

attribute DOMString countryName
A string that contains the name of the country. It maps to the seventh
component in vCard's ADR attribute.

G.11.1. ContactAddressInit Dictionary

sequence<DOMString> types

boolean preferred

DOMString streetAddress

DOMString locality

DOMString region

DOMString postalCode

DOMString countryName

G.12. THE CONTACTGENDER ENUM

male
contact is a male.

female
contact is a female.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 136 of 298

other
contact has another gender.

none
contact does not have a gender (not applicable).

unknown
contact's gender is unknown.

G.13. CONTACTNAME INTERFACE

The ContactName interface represents a user's naming attributes.

attribute DOMString displayName
A string representing the contact's display name. It maps to vCard's FN
attribute.

attribute DOMString[] honorificPrefixes
A string or set thereof representing the contact's honorific prefix(es). It
maps to the forth component in vCard's N attribute.

attribute DOMString[] givenNames
A string or set thereof representing the contact's given name(s). It maps to
the second component in vCard's N attribute.

attribute DOMString[] additionalNames
A string or set thereof representing any additional name of the contact. It
maps to the third component in vCard's N attribute.

attribute DOMString[] familyNames
A string or set thereof representing the contact's family name(s). It maps
to the first component in vCard's N attribute.

attribute DOMString[] honorificSuffixes
A string or set thereof representing the contact's honorific suffix(es). It
maps to the fifth component in vCard's N attribute.

attribute DOMString[] nicknames
A string or set thereof representing the contact's nick name(s). It maps to
vCard's NICKNAME attribute.

G.13.1. ContactNameInit Dictionary

DOMString displayName

sequence<DOMString> honorificPrefixes

sequence<DOMString> givenNames

sequence<DOMString> additionalNames

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 137 of 298

sequence<DOMString> familyNames

sequence<DOMString> honorificSuffixes

sequence<DOMString> nicknames

G.14. CONTACT INTERFACE

The Contact interface represents a contact stored in the address book. As a
principle the attributes are based on vCard 4.0 and reuse the literal used in
that standard. Any naming deviation is mentioned in the description of the
corresponding attribute. Whereas this correspondence facilitates the import/
export from/to vCard format it should be noted that a vCard import/export API
is out of scope of this specification as parsing and serializing can be efficiently
done in JavaScript, and libraries are readily available.

readonly attribute DOMString? id
Represents a unique identifier of the contact in the address book.

readonly attribute Date? lastUpdated
A Date element representing the date when the contact was last updated.

attribute ContactName name
An object representing the different naming attributes of the contact.

attribute ContactField[] emails
A ContactField element or set thereof containing the contact's email
address(es). It maps to vCard's EMAIL attribute.

attribute DOMString[] photos
A string or set thereof representing the URI of the photo(s) of the contact.
It maps to vCard's PHOTO attribute.

attribute ContactField[] urls
A ContactField element or set thereof containing the user's urls (e.g.
personal blog). It maps to vCard's URL attribute.

attribute DOMString[] categories
A string or set thereof representing the category or categories associated
to the contact (e.g. "family"). It maps to vCard's CATEGORIES attribute.

attribute ContactAddress[] addresses
A ContactAddress element or set thereof containing the user's physical
address(es). It maps to vCard's ADR attribute

attribute ContactTelField[] phoneNumbers
A ContactTelField element or set thereof containing the user's telephone
numbers. It maps to vCard's TEL attribute

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 138 of 298

http://tools.ietf.org/html/rfc6350

attribute DOMString[] organizations
A string or set thereof representing the organization(s) the contact belongs
to. It maps to vCard's ORG attribute

attribute DOMString[] jobTitles
A string or set thereof representing the contact's job title(s). It maps to
vCard's TITLE attribute

attribute Date? birthday
A Date element representing the contact's birth date. It maps to vCard's
BDAY attribute

attribute DOMString[] notes
A string or set thereof specifying supplemental information or a comment
that is associated with the contact. It maps to vCard's NOTE attribute

attribute ContactField[] impp
A ContactField element or set thereof containing the user's instant
messaging address(es). It maps to vCard's IMPP attribute

attribute Date? anniversary
A Date element representing the contact's anniversary. It maps to vCard's
ANNIVERSARY attribute

attribute ContactGender gender
A string representing the contact's gender. It maps to the first component
of vCard's GENDER attribute.

G.14.1. Steps

The Contact interface's contructor when invoked MUST run the following
steps:

1. Let contact be a new Contact object.
2. Make a request to the system to generate a new unique contact

identifier.
3. Set the id attribute of contact to the generated contact identifier.
4. Set the lastUpdated attribute of contact to the Date at which the

constructor was invoked.
5. Set the other attributes of contact to the value of the corresponding

element in the contactInitDict dictionary, if present.

G.14.2. ContactInit Dictionary

ContactName name

sequence<ContactField> emails

sequence<DOMString> photos

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 139 of 298

sequence<ContactField> urls

sequence<DOMString> categories

sequence<ContactAddress> addresses

sequence<ContactTelField> phoneNumbers

sequence<DOMString> organizations

sequence<DOMString> jobTitles

Date birthday

sequence<DOMString> notes

sequence<ContactField> impp

Date anniversary

ContactGender gender

G.15. CONTACTSCHANGEEVENT INTERFACE

The ContactsChangeEvent interface represents events related to the set of
contacts that have been simultaneously added, removed and/or modified.
Changes that are applied to the address book in batches cause a
ContactsChangeEvent with multiple contact references to be fired, whereas
changes applied sequentially cause a ContactsChangeEvent with a single
contact reference to be fired

readonly attribute DOMString[] added
Indicates the identifier(s) of the Contact object(s) that have been added.

readonly attribute DOMString[] modified
Indicates the identifier(s) of the Contact object(s) that have been modified.

readonly attribute DOMString[] removed
Indicates the identifier(s) of the Contact object(s) that have been removed.

G.15.1. ContactsChangeEventInit Dictionary

sequence<DOMString> added

sequence<DOMString> modified

sequence<DOMString> removed

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 140 of 298

G.16. ACKNOWLEDGEMENTS

The editors would like to express their gratitude to the Mozilla B2G Team for
their technical guidance, implementation work and support, and specially to
Tantek Çelik and Gregor Wagner, the original authors of B2G Contact API.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 141 of 298

H. MESSAGING API

W3C Editor's Draft 29 November 2014

This version:
http://www.w3.org/2012/sysapps/messaging/

Latest published version:
http://www.w3.org/TR/messaging/

Latest editor's draft:
http://www.w3.org/2012/sysapps/messaging/

Editors:
Eduardo Fullea, Telefonica
Jose M. Cantera, Telefonica
Zoltan Kis, Intel

Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
W3C liability, trademark and document use rules apply.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 142 of 298

This specification defines a System Level API which offers a simple interface to
get access to mobile messaging services. A typical use case of the Messaging
API is the implementation of a messaging client application that allows the user
to send SMS and MMS messages as well as to access and manage the received
SMS and MMS messages.

H.1. INTRODUCTION

The Messaging API provides operations to get access to the primitives offered
by mobile messaging services (send, receive) as well as those that allow to
manage a mobile messaging client inbox (delete, store, mark as read)

An example of use is provided below:

navigator.messaging.sms.send ('+1234567890', 'How are you?').then(
function(message) { window.console.log('Message with identifier ' +

message.messageID + ' sent at ' + message.timestamp); },
function(error) { window.console.error('Error: ' + error); })

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 143 of 298

This specification defines conformance criteria that apply to a single product:
the user agent that implements the interfaces that it contains.

Implementations that use ECMAScript to implement the APIs defined in this
specification MUST implement them in a manner consistent with the
ECMAScript Bindings defined in the Web IDL specification [[!WEBIDL]], as this
specification uses that specification and terminology.

H.2. TERMINOLOGY

The EventHandler interface represents a callback used for event handlers as
defined in [[!HTML5]].

The concepts queue a task and fire an event are defined in [[!HTML5]].

The terms event handler and event handler event types are defined in
[[!HTML5]].

The Promise interface, the concepts of a resolver, a resolver's fulfill algorithm
and a resolver's reject algorithm are defined in [[DOM4]].

H.3. SECURITY AND PRIVACY CONSIDERATIONS

This API must be only exposed to trusted content

H.4. NAVIGATOR INTERFACE

readonly attribute Messaging messaging
The object that exposes the interface to mobile messaging services.

H.5. MESSAGINGMANAGER INTERFACE

The MessagingManager interface represents the initial entry point for getting
access to the mobile messaging services, i.e. SMS and MMS.

readonly attribute SmsManager sms
Provides access to the SMS service's specific functionality.

readonly attribute MmsManager mms
Provides access to the MMS service's specific functionality.

Promise findMessages ()
This method makes a request to retrieve the messages matching the filter
described by the filter parameter and according to the filtering options
described in the options. It returns a new Promise that will be used
to notify the caller about the result of the operation, which is a
MessagingCursor to access the set of messages.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 144 of 298

http://dev.w3.org/html5/spec/webappapis.html#eventhandler
http://dev.w3.org/html5/spec/webappapis.html#queue-a-task
http://dev.w3.org/html5/spec/webappapis.html#fire-a-simple-event
http://dev.w3.org/html5/spec/webappapis.html#event-handlers
http://dev.w3.org/html5/spec/webappapis.html#event-handler-event-type
http://dom.spec.whatwg.org/#promise
http://dom.spec.whatwg.org/#concept-resolver
http://dom.spec.whatwg.org/#concept-resolver-fulfill
http://dom.spec.whatwg.org/#concept-resolver-reject

MessagingFilter filter
Filter that identifies the set of messages that are requested to be
retrieved

FilterOptions options
Indicates the filtering options (i.e. sorting criteria, sorting order, limit
of results).

Promise findConversations ()
This method makes a request to retrieve the list of conversations in which
the messages can be grouped using the criteria defined by the groupBy
parameter. Only those messages matching the filter described in the
filter parameter SHALL be included in the resulting conversations, what
can be useful for instance to filter just a specific type of messages (e.g.
SMS) or to implement message search in a conversational messaging
client. It returns a new Promise that will be used to notify the caller about
the result of the operation, which is a MessagingCursor to access the set of
conversations.
DOMString groupBy

Indicates the criteria used to define the conversations. It may have
the values 'participants' if a conversation is to be defined as the set
of messages exchanged among the same set of parties, and 'subject' if
a conversation is to be defined as the set of messages with the same
subject.

MessagingFilter filter
Filter that identifies the set of messages that are requested to be
included in the resulting conversations.

FilterOptions options
Indicates the filtering options (i.e. sorting criteria, sorting order, limit
of results) to be aplied when filtering the messages to be included in
each of the resulting conversations.

Promise getMessage ()
This method makes a request to retrieve the message identified by the
messageID parameter. It returns a new Promise object which allows the
caller to be notified about the result of the operation.
DOMString messageID

Identifier of the message that is requested to be retrieved

Promise deleteMessage ()
This method requests the deletion of the message with identifier equal to
the messageID parameter. A new Promise is returned in order to notify the
request result (success or error) to the caller.
DOMString messageID

Identifier of the message that is requested to be deleted

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 145 of 298

Promise deleteConversation ()
This method requests the deletion of all the messages in the conversation
with identifier equal to the conversationID parameter. A new Promise is
returned in order to notify the request result (success or error) to the caller.
DOMString conversationID

Identifier of the conversation whose messages are requested to be
deleted

Promise markMessageRead ()
This method requests to mark as read or unread the message with
identifier equal to the messageID parameter. The method returns a new
Promise that will allow the caller to be notified about the result (success,
error) of the operation.
DOMString messageID

Identifier of the message that is requested to be marked as read or
unread

boolean value
Indicates whether the message is to be marked as read ('true') or
unread ('false')

optional boolean sendReadReport = false
Indicates that, in case a Read Report was requested, it is to be sent
('true') or not ('false', which is the default)

Promise markConversationRead ()
This method requests to mark as read or unread all the messages in the
conversation with identifier equal to the conversationID parameter. The
method returns a new Promise that will allow the caller to be notified about
the result (success, error) of the operation.
DOMString conversationID

Identifier of the conversation whose messages are requested to be
marked as read or unread

boolean value
Indicates whether the messages in the conversation are to be marked
as read ('true') or unread ('false')

optional boolean sendReadReport = false
Indicates that, in case a Read Report was requested for any MMS
message in the conversation, a Read Report is to be sent ('true') or not
('false', which is the default)

H.5.1. Steps

The findMessages method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 146 of 298

3. Make a request to the system to get the message(s) matching the filter
included in the filter parameter and according to the filtering options
described in the options parameter.

4. If an error occurs invoke resolver's reject algorithm with error as the
value argument.

5. When the request has been successfully completed:
1. Let messagingCursor be a new MessagingCursor object providing

access to the results of the retrieval, i.e. the set of SmsMessage
and/or MmsMessage elements.

2. Invoke resolver's fulfill algorithm with messagingCursor as the
value argument.

The findConversations method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. Make a request to the system to get the set of conversations in which

the messages can be grouped, according to the set of participants
or the subject as indicated in the groupBy parameter, and filtering
the messages included in those conversations according to the filter
included in the filter parameter and the filtering options described in
the options parameter.

4. If an error occurs invoke resolver's reject algorithm with error as the
value argument.

5. When the request has been successfully completed:
1. Let messagingCursor be a new MessagingCursor object providing

access to the results of the retrieval, i.e. the set of Conversation
elements.

2. Invoke resolver's fulfill algorithm with messagingCursor as the
value argument.

The getMessage method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. Make a request to the system to get the message with identifier equal to

the messageID parameter passed in the request.
4. If an error occurs invoke resolver's reject algorithm with error as the

value argument.
5. When the request has been successfully completed:

1. Let message be the SmsMessage or MmsMessage whose identifier
matches the messageID parameter.

2. Invoke resolver's fulfill algorithm with message as the value
argument.

The deleteMessage method when invoked MUST run the following steps:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 147 of 298

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. Make a request to the system to delete the message with identifier equal

to the messageID parameter passed in the request.
4. If an error occurs invoke resolver's reject algorithm with error as the

value argument.
5. When the request has been successfully completed:

1. Let messageID be the messageID parameter passed in the request
2. Invoke resolver's fulfill algorithm with messageID as the value

argument.

The deleteConversation method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. Make a request to the system to delete the messages in the conversation

with identifier equal to the conversationID parameter passed in the
request.

4. If an error occurs invoke resolver's reject algorithm with error as the
value argument.

5. When the request has been successfully completed:
1. Let conversationID be the conversationID parameter passed in

the request
2. Invoke resolver's fulfill algorithm with conversationID as the

value argument.

The markMessageRead method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. Make a request to the system to mark as read/unread (depending on the

value parameter being respectively 'true' or 'false') the message with
identifier equal to the messageID parameter passed in the request, and
to send a Read Report if sendReadReport is set to 'true'.

4. If an error occurs invoke resolver's reject algorithm with error as the
value argument.

5. When the request has been successfully completed:
1. Let messageID be the messageID parameter passed in the request
2. Invoke resolver's fulfill algorithm with messageID as the value

argument.

The markConversationRead method when invoked MUST run the following
steps:

1. Let promise be a new Promise object and resolver its associated
resolver

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 148 of 298

2. Return promise to the caller.
3. Make a request to the system to mark as read/unread (depending on

the value parameter being respectively 'true' or 'false') the messages in
the conversation with identifier equal to the conversationID parameter
passed in the request, and in case sendReadReport is set to 'true', to
send a Read Report for each of the MMS messages for which it was
requested.

4. If an error occurs invoke resolver's reject algorithm with error as the
value argument.

5. When the request has been successfully completed:
1. Let conversationID be the conversationID parameter passed in

the request
2. Invoke resolver's fulfill algorithm with conversationID as the

value argument.
It is FFS whether the methods deleteMessage() and markMessageRead()
should also accept an array of message identifiers as input parameter.

H.6. SMSMANAGER INTERFACE

The SmsManager interface represents the SMS messaging service manager.

readonly attribute MessageType type
MUST return the type of the messaging service manager. It can have the
following values: 'sms' or 'mms'.

readonly attribute DOMString[] serviceIDs
MUST return the identifier of the different services for this type of
messaging service (e.g. 'sms_sim1').

Promise segmentInfo ()
This method issues a request to get information on the number of
concatenated SMS segments needed to send the text in the text
parameter, the number of characters available per segment and the
maximum number of available characters in the last segment. A Promise
object will be returned in order to notify the result of the request.
DOMString text

Text intended to be sent as an SMS, whose segmentation information is
checked by this method.

optional DOMString serviceID
Identifier of the service through which the message is would be sent.

Promise send ()
This method issues a request to the messaging system to send an SMS
message with the text of the text parameter to the destination number
indicated in the to parameter. A Promise object will be returned in order
to notify the result of the request.
DOMString to

Destination number for the SMS message.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 149 of 298

DOMString text
Content of the SMS message to be sent.

optional DOMString serviceID
Identifier of the service through which the message is requested to be
sent.

Promise clear ()
This method makes a request to delete all the messages associated to the
messaging service passed as parameter.
DOMString serviceID

Identifies the messaging service all whose messages are requested to
be deleted.

attribute EventHandler onreceived
Handles the received event of type MessagingEvent, fired when a new
message is received on this messaging service manager.

attribute EventHandler onsent
Handles the sent event of type MessagingEvent, fired when a new message
is sent using this messaging service manager.

attribute EventHandler ondeliverysuccess
Handles the deliverysuccess event of type DeliveryReportEvent, fired
when a new succesful delivery report is received on this messaging service
manager.

attribute EventHandler ondeliveryerror
Handles the deliveryerror event of type DeliveryReportEvent, fired when
a new failure delivery report is received on this messaging service
manager.

attribute EventHandler onserviceadded
Handles the serviceadded event of type ServiceChangeEvent, fired
whenever a new messaging service is enabled on this messaging service
manager.

attribute EventHandler onserviceremoved
Handles the serviceremoved event of type ServiceChangeEvent, fired
when an existing messaging service is disabled on this messaging service
manager.

H.6.1. Steps

The send method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. Let smsMessage be a new instance of SmsMessage:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 150 of 298

1. Generate a identifier for this message that is globally unique
within the implementation, i.e. there cannot be any other
message with the same identifier.

2. Set the messageID of smsMessage to the generated identifier.
3. Set the type of smsMessage to 'sms'.
4. Set the serviceID of smsMessage to the identifier of the service

used to send the message, i.e. the one passed in the serviceID
parameter, if provided, or otherwise to the first item in the
serviceIDs attribute of the SmsManager.

5. Set the from of smsMessage to the number of the mobile
subscription used to send this SMS message.

6. Set the read of smsMessage to 'true'.
7. Set the to of smsMessage to the value of the to parameter.
8. Set the body of smsMessage to the value of the text parameter.
9. Set the messageClass of smsMessage to 'class1'.

10. Set the state of smsMessage to 'sending'.
11. Set the deliveryStatus of smsMessage to 'pending' if a delivery

report has been requested or to 'not-applicable' otherwise.
12. Make a request to the system to send an SMS message with

text passed in the text parameter to the number of the recipient
indicated in the to parameter, using the proper service as
described above.

13. Queue a task to monitor SMS submission process.
4. If an error occurs run these substeps and terminate these steps

1. If a delivery report had been requested set the deliveryStatus
of smsMessage to 'error'.

2. invoke resolver's reject algorithm with error as the value
argument.

5. When the request has been successfully completed:
1. Set the state of smsMessage to 'sent'.
2. Set the timestamp of smsMessage to the device's date when the

SMS message was sent, i.e. when the SMS-SUBMIT Protocol Data
Unit was sent.

3. Invoke resolver's fulfill algorithm with smsMessage as the value
argument.

4. Queue a task to fire an event named sent with the message
attribute set to smsMessage.

The segmentInfo method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. Let smsSegmentInfo be a new instance of SmsSegmentInfo.
4. Make a request to the system to calculate the segmentation information

related to the sending as SMS the text passed in the text parameter,
using the service with identifier equal to the one passed in the
serviceID parameter, if provided, or otherwise to the first item in the
serviceIDs attribute of the SmsManager.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 151 of 298

5. Queue a task to monitor the calculation process.
6. If an error occurs run these substeps and terminate these steps

1. invoke resolver's reject algorithm with error as the value
argument.

7. When the request has been successfully completed:
1. Set the segments of smsSegmentInfo to the number of

concatenated SMS segments needed to send the provided text.
2. Set the charsPerSegment of smsSegmentInfo to the number of

characters available per SMS segment. This number depends on
the encoding to be used to send the SMS message, which in turn
depends on the language / special characters included in the text.

3. Set the charsAvailableInLastSegment of smsSegmentInfo to the
maximum number of available characters in the last segment that
would be needed to send the input string. This provides useful
information to the user on the number of characters that can type
without requiring an additional SMS segment to send the text.

4. Invoke resolver's fulfill algorithm with smsSegmentInfo as the
value argument.

Note that the application that has invoked the segmentInfo method SHOULD
NOT split the text in a set of strings that fit each into a single SMS segment and
send each of them by an independent call to the sendSMS method as it would
result in different independent SMS messages being sent, but SHOULD instead
send the full message in a single sendSMS request. However having information
on the number of SMS segments may be required by the application in order to
inform the user (e.g. in case the length of the text impacts on the price charged
for sending the message).

Upon a new SMS message being received, the user agent MUST:

1. Let smsMessage be a new instance of SmsMessage.
2. Generate a identifier for this message that is globally unique within the

implementation, i.e. there cannot be any other message with the same
identifier.

3. Set the messageID of smsMessage to the generated identifier.
4. Set the type of smsMessage to 'sms'.
5. Set the serviceID of smsMessage to the identifier of the service at

which the message has been received.
6. Set the from of smsMessage to the sender of the SMS message, i.e. the

value of the TP Originating Address (TP-OA) field of the SMS message
[[!GSM-SMS]].

7. Set the timestamp of smsMessage to the timestamp of the SMS
message, i.e. the value of the TP-Service-Centre-Time-Stamp (TP-SCTS)
parameter received in the SMS DELIVER Protocol Data Unit [[!GSM-
SMS]].

8. Set the read of smsMessage to 'false'.
9. Set the to of smsMessage to the recipient of the SMS message, i.e. the

value of the TP Destination Address (TP-DA) field of the SMS message
[[!GSM-SMS]].

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 152 of 298

10. Set the messageClass of smsMessage to the message class indicated in
the TP-Data-Coding-Scheme (TP-DCS) field of the SMS message [[!GSM-
SMS]].

11. Set the body element to the text of the received SMS message, i.e. the
value of the SM element contained within the TP User Data (TP-UD) field
of the SMS message [[!GSM-SMS]].

12. Set the state of smsMessage to 'received'.
13. Set the deliveryStatus of smsMessage to 'not-applicable'.
14. Queue a task to fire an event named received with the message

attribute set to smsMessage.
15. Queue a task to fire a system message named received of type

ReceivedMessage with the message attribute set to smsMessage.

Upon a delivery report of a previously sent SMS message being received, the
user agent MUST

1. Let smsMessage be the instance of SmsMessage to which this delivery
report is related.

2. Set the deliveryStatus parameter of smsMessage to 'success' or 'error'
depending on the reported result.

3. Set the deliveryTimestamp of smsMessage to the delivery time of the
SMS message, i.e. the TP-Discharge-Time (TP DT) parameter included
in the SMS-STATUS-REPORT Protocol Data Unit [[!GSM-SMS]].

4. Queue a task to fire an event named deliverysuccess or deliveryerror
respectively if the delivery was successfull or not, with

1. the messageID attribute set to the messageID attribute of
smsMessage,

2. the serviceID attribute set to the serviceID attribute of
smsMessage,

3. the first item in the recipients attribute set to the to attribute of
smsMessage, and

4. the first item in the deliveryTimestamps attribute set to delivery
time of such message.

5. Queue a task to fire a system message of type DeliveryReportnamed
deliverysuccess or deliveryerror respectively if the delivery was
successfull or not, with

1. the messageID attribute set to the messageID attribute of
smsMessage,

2. the serviceID attribute set to the serviceID attribute of
smsMessage, and

3. the first item in the recipients attribute set to the to attribute of
smsMessage.

4. the first item in the deliveryTimestamps attribute set to delivery
time of such message.

The clear method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 153 of 298

2. Return promise to the caller.
3. Make a request to the system to delete all the messages associated to

the messaging service with identifier equal to the serviceID parameter.
4. If an error occurs invoke resolver's reject algorithm with error as the

value argument.
5. When the request has been successfully completed:

1. Let serviceID be the serviceID parameter passed in the request
2. Invoke resolver's fulfill algorithm with serviceID as the value

argument.

H.7. EVENT HANDLERS

The following are the event handlers (and their corresponding event types)
that MUST be supported as attributes by the SmsManager object.

event handler event name event type short
description

onreceived received MessagingEvent
handles
received
messages

onsent sent MessagingEvent
handles
sent
messages

ondeliverysuccess deliverysuccess DeliveryReportEvent

handles
successful
delivery
reports

ondeliveryerror deliveryerror DeliveryReportEvent

handles
failure
delivery
reports

onserviceadded serviceadded ServiceChangeEvent
handle new
messaging
services

onserviceremoved serviceremoved ServiceChangeEvent

handle
disabled
messaging
services

H.8. SMSSEGMENTINFO DICTIONARY

The SmsSegmentInfo dictionary contains information about the segmentation
of a given text to be sent as SMS.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 154 of 298

long segments
MUST return the total number of SMS segments needed to send the input
string, taking into account the encoding to be used to send such message
as well as the overhead associated to concatenated SMS messages.

long charsPerSegment
MUST return the number of characters available per SMS segment as per
the encoding to be used to send the SMS message. In case the variable
length encoding, the value of this element MUST be calculated asumming
the minimum length for all the characters.

long charsAvailableInLastSegment
MUST return the maximum number of available characters in the last
segment needed to send the input string. In case the variable length
encoding, the value of this element MUST be calculated asumming the
minimum length for all the remaining characters.

H.9. MMSMANAGER INTERFACE

The MmsManager interface represents the MMS messaging service manager.

readonly attribute MessageType type
MUST return the type of the messaging service manager. It can have the
following values: 'sms' or 'mms'.

readonly attribute DOMString[] serviceIDs
MUST return the identifier of the different services for this type of
messaging service (e.g. 'sms_sim1').

FetchMode getFetchMode ()
This method requests to retrieve the fetch mode associated to a specific
service (the one identified by the serviceID parameter, if provided, or the
first item in the serviceIDs attribute of the MmsManager otherwise).
optional DOMString serviceID

Identifier of the service whose fetch mode is queried.

void setFetchMode ()
This method issues a request to the messaging system to set the MMS
message fetch mode for the service identified by the serviceID parameter,
if provided, or for all services otherwise, to the mode indicated in the
fetchMode parameter.
FetchMode fetchMode

Fetch mode that is requested to be set for a specific service.

optional DOMString serviceID
Identifier of the service whose fetch mode is requested to be set.

Promise send ()
This method issues a request to the messaging system to send an MMS
message with the content and recipients included in the mmsContent

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 155 of 298

parameter. A Promise object will be returned in order to notify the result of
the request.
MmsContent mmsContent

Content and recipients of the MMS message to be sent.

optional MmsSendParameters sendParameters
Set of parameters related to the submission of the message (e.g.
request of delivery/read report or not).

Promise fetch ()
This method requests to fetch an MMS message with identifier equal to the
indicated in the messageID parameter from the URL indicated in the MMS
notification. The method returns a new Promise that will allow the caller to
be notified about the result (success, error) of the operation.
DOMString messageID

Identifier of the MMS message that is requested to be download.

Promise clear ()
This method makes a request to delete all the messages associated to the
messaging service passed as parameter.
DOMString serviceID

Identifies the messaging service all whose messages are requested to
be deleted.

attribute EventHandler onreceived
Handles the received event of type MessagingEvent, fired when a new
message is received on this messaging service manager.

attribute EventHandler onsent
Handles the sent event of type MessagingEvent, fired when a new message
is sent using this messaging service manager.

attribute EventHandler ondeliverysuccess
Handles the deliverysuccess event of type DeliveryReportEvent, fired
when a new succesful delivery report is received on this messaging service
manager.

attribute EventHandler ondeliveryerror
Handles the deliveryerror event of type DeliveryReportEvent, fired when
a new failure delivery report is received on this messaging service
manager.

attribute EventHandler onreadsuccess
Handles the readsuccess event of type ReadReportEvent, fired when a
new succesful read report is received on this messaging service manager.

attribute EventHandler onreaderror
Handles the readerror event of type ReadReportEvent, fired when a new
failure read report is received on this messaging service manager.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 156 of 298

attribute EventHandler onserviceadded
Handles the serviceadded event of type ServiceChangeEvent, fired
whenever a new messaging service is enabled on this messaging service
manager.

attribute EventHandler onserviceremoved
Handles the serviceremoved event of type ServiceChangeEvent, fired
when an existing messaging service is disabled on this messaging service
manager.

It is FFS whether MMS settings (e.g. fetch mode, creation mode) needs to be
managed through the MmsManager interface.

H.9.1. Steps

The send method when invoked MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. Let mmsMessage be a new instance of MmsMessage and:

1. Generate a identifier for this message that is globally unique
within the implementation, i.e. there cannot be any other
message with the same identifier.

2. Set the messageID of mmsMessage to the generated identifier.
3. Set the type of mmsMessage to 'mms'.
4. Set the serviceID of mmsMessage to the identifier of the service

used to send the message, i.e. the one passed in the serviceID
parameter in MmsSendParameters, if provided, or otherwise to the
first item in the serviceIDs attribute of the MmsManager.

5. Set the from of mmsMessage to the number of the mobile
subscription used to send this MMS message.

6. Set the read of mmsMessage to 'true'.
7. Set the to of mmsMessage to the to in the mmsContent parameter.
8. Set the cc of mmsMessage to the cc array in the mmsContent

parameter.
9. Set the bcc of mmsMessage to the bcc array in the mmsContent

parameter.
10. Set the subject of mmsMessage to the value of the the subject

parameter in mmsContent.
11. Set the smil of mmsMessage to the value of the the smil

parameter in mmsContent.
12. Set the attachments of mmsMessage to the value of the the

attachments array in mmsContent parameter.
13. Set the state of mmsMessage to 'sending'.
14. Add a new item in the deliveryInfo attribute of mmsMessage for

each unique recipient included in the to, cc and bcc parameters
(i.e. a single item if the same address has multiple ocurrences
across these parameters), with the recipient attribute set to

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 157 of 298

this recipient's address, with the deliveryStatus attribute set
to 'pending', if a delivery report has been requested, or 'not-
applicable' otherwise and with the readStatus attribute set to
'pending', if a read report has been requested, or 'not-applicable'
otherwise.

15. Make a request to the system to send an MMS message with
the content passed in the content parameter to the number(s)
of indicated in the to parameter, using the proper service as
described above and asking for delivery and/or read report if
requested.

16. Queue a task to monitor MMS sending progress.
4. If an error occurs run these substeps and terminate these steps

1. If a delivery report had been requested set the deliveryStatus
attribute of the different items in the deliveryInfo array
attribute of mmsMessage to 'error'.

2. invoke resolver's reject algorithm with error as the value
argument.

5. When the request has been successfully completed:
1. Set the state of mmsMessage to 'sent'.
2. Set the timestamp of mmsMessage to the device's date when

the MMS message was sent, i.e. the date when the M-Send.req
Protocol Data Unit was sent by the MMS Client.

3. Invoke resolver's fulfill algorithm with mmsMessage as the value
argument.

4. Queue a task to fire an event named sent with the message
attribute set to mmsMessage.

The reception of an MMS message is a two-step process: Firstly, an MMS
notification encapsulated in a WAP Push OTA message [[OMA-PUSH]] is
received by the device. This MMS notification contains limited information
about the MMS message and a URL where the device can retrieve the full
MMS message from. Secondly, the MMS message is retrieved either
automatically, i.e. performed right after the reception of the MMS notification,
or manually, i.e. invoked manually by the user.

Upon a new MMS notification being received, the user agent MUST:

1. Let mmsMessage be a new instance of MmsMessage.
2. Generate a identifier for this message that is globally unique within the

implementation, i.e. there cannot be any other message with the same
identifier.

3. Set the messageID of mmsMessage to the generated identifier.
4. Set the type of mmsMessage to 'mms'.
5. Set the serviceID of mmsMessage to the identifier of the service at

which the message has been received.
6. Set the read of mmsMessage to 'false'.
7. if the fetch mode is manual, never or the device is not in the home

network and the the fetch mode is automatic-home:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 158 of 298

1. Set the from of mmsMessage to the value of the 'From' field of the
MMS notification, if present.

2. Set the timestamp of mmsMessage to the timestamp of the binary
SMS message used to transport the MMS notification, i.e. the
value of the TP-Service-Centre-Time-Stamp (TP-SCTS) parameter
received in the SMS-DELIVER Protocol Data Unit [[!GSM-SMS]].

3. Set the expiry of mmsMessage to the value of the 'X-Mms-Expiry'
field of the MMS notification.

4. Add a new item in the to array of mmsMessage for each of
recipients in the 'To' field of the MMS notification [[!MMS13]], if
present.

5. Add a new item in the cc array of mmsMessage for each of
recipients in the 'Cc' field of the MMS notification [[!MMS13]], if
present.

6. Add a new item in the bcc array of mmsMessage for each of
recipients in the 'Bcc' field of the MMS notification [[!MMS13]], if
present.

7. Set the subject attribute to the value of the 'Subject' field of the
MMS notification [[!MMS13]], if present.

8. Set the state of mmsMessage to 'not-downloaded'.
8. if the fetch mode is otherwise automatic or the device is in the home

network and the the fetch mode is automatic-home:
1. Make a request to the system to fetch the MMS message from

the URL indicated in the X-Mms-Content-Location field of the
MMS notification. Once the MMS has been fetched continue with
following steps.

2. Run the steps for filling the MmsMessage object with the data
contained in the MMS message enclosed in the M-Retrieve.conf
Protocol Data Unit.

1. Set the from of mmsMessage to the value of the 'From' field
of the MMS message [[!MMS13]].

2. Set the timestamp of mmsMessage to the value of the
'Date' field of the MMS message [[!MMS13]].

3. Add a new item in the to array of mmsMessage for each
of recipients in the 'To' field of the MMS message
[[!MMS13]], if present.

4. Add a new item in the cc array of mmsMessage for each
of recipients in the 'Cc' field of the MMS message
[[!MMS13]], if present.

5. Add a new item in the bcc array of mmsMessage for each
of recipients in the 'Bcc' field of the MMS message
[[!MMS13]], if present.

6. Set the subject attribute to the value of the 'Subject' field
of the MMS message [[!MMS13]], if present.

7. Set the smil attribute to a DOMString containing the SMIL
object of the received MMS message [[!MMS13]], if
present.

8. For each of the media files attached to the received MMS
message add a new item to the attachments array with:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 159 of 298

1. A new Blob object including the actual content of
the attachment and the media type. The charset
encoding is indicated as part of the type attribute
of the Blob object by means of appending a charset
parameter after the media type as explained in
[[!RFC2046]], e.g. "text/plain; charset=utf-8".

2. The contentID attribute filled with the Content-ID
used to reference this attachment from the SMIL
object in the incoming MMS message [[!MMS13]], if
present.

3. The contentLocation attribute filled with the
Content-Location used to reference this attachment
from the SMIL object in the incoming MMS message
[[!MMS13]], if present.

9. Set the readReportRequested attribute to 'true' if the 'X-
Mms-Read-Report' field is present in the incoming MMS
message [[!MMS13]] and has the value 'Yes', and to 'false'
otherwise.

3. Set the state of mmsMessage to 'received'.
4. Add a new item in the deliveryInfo array attribute of

mmsMessage for each unique recipient included in the 'To', 'Cc'
and 'Bcc' fields (i.e. a single item if the same address has multiple
ocurrences across these parameters), with the recipient
attribute set to this recipient's address and the deliveryStatus
attribute set to 'not-applicable'.

9. Queue a task to fire an event named received with the message
attribute set to mmsMessage.

10. Queue a task to fire a system message named received of type
ReceivedMessage with the message attribute set to mmsMessage.

The fetch method can be invoked to fetch an MMS message that has not been
automatically fetched upon receiving the corresponding MMS notification, e.g.
due to the fetch mode being manual. When this method is invoked the User
Agent MUST run the following steps:

1. Let promise be a new Promise object and resolver its associated
resolver

2. Return promise to the caller.
3. If the messageID parameter passed in the request matches with an MMS

message that has already been fetched, or to an SMS message go to next
step, otherwise let mmsMessage the message with messageID attribute
equal to the messageID parameter and set the state of mmsMessage to
'fetching' and make a request to the system to fetch the MMS message.

4. If an error occurs invoke resolver's reject algorithm with error as the
value argument.

5. When the request has been successfully completed:
1. Run the steps for filling the MmsMessage object with the data

contained in the MMS message.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 160 of 298

2. Invoke resolver's fulfill algorithm with mmsMessage as the value
argument.

An example of manual fetch of an MMS is provided below:

navigator.setMessageHandler ('received', onMessageReceived)
function onMessageReceived(message) {

if (message.type == 'sms') { window.console.log('SMS Message from ' +
message.from + ' received'); }

else if (message.type == 'mms') {
window.console.log('MMS Message from ' + message.from + ' received');
if (message.state == 'not-downloaded') {

window.console.log('MMS Message download started');
navigator.messaging.mms.fetch (message.id).done(

function(message) { window.console.log('MMS Message downloaded!');},
function(error) { window.console.error('Error: ' + error);});

}
}

}

It is FFS how to report the progress of the sending and fetching of an MMS
message.

Upon a delivery report of a previously sent MMS message being received, the
user agent MUST

1. Let mmsMessage be the instance of MmsMessage to which this delivery
report is related.

2. For each of the items in the deliveryInfo array attribute of
mmsMessage whose recipient attribute matches one of the recipients
of the MMS to which the delivery report is related,

1. set its deliveryStatus attribute:
1. to 'success', in case of successful delivery, i.e. if the value

of the X-Mms-Status element in the M-Delivery.ind Protocol
Data Unit [[!MMS13]] is 'Retrieved', or

2. to 'error', in case of failed delivery, i.e. if the value of the
X-Mms-Status element in the M-Delivery.ind Protocol Data
Unit [[!MMS13]] is 'Expired', 'Rejected' or 'Unreachable'.

2. set its deliveryTimestamp attribute to the delivery time, i.e. the
'Date' field in the M-Delivery.ind Protocol Data Unit [[!MMS13]],
in case of successful delivery.

3. Queue a task to fire an event named deliverysuccess or deliveryerror
respectively if the delivery was successfull or not, with

1. the messageID attribute set to the messageID attribute of
mmsMessage,

2. the serviceID attribute set to the serviceID attribute of
mmsMessage,

3. the recipients attribute set to the subset of the original
recipients of mmsMessageto which this delivery report is related,
and

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 161 of 298

4. in case of successful delivery, with each of the items in the
deliveryTimestamps attribute set to the delivery time of the
MMS message to the corresponding recipient, i.e. that in the
same position of the recipients array.

4. Queue a task to fire a system message of type DeliveryReport named
deliverysuccess or deliveryerror respectively if the delivery was
successfull or not, with

1. the messageID attribute set to the messageID attribute of
mmsMessage,

2. the serviceID attribute set to the serviceID attribute of
mmsMessage,

3. the recipients attribute set to the subset of the original
recipients of mmsMessageto which this delivery report is related,
and

4. in case of successful delivery, with each of the items in the
deliveryTimestamps attribute set to the delivery time of the
MMS message to the corresponding recipient, i.e. that in the
same position of the recipients array.

Upon a read report of a previously sent MMS message being received, the user
agent MUST

1. Let mmsMessage be the instance of MmsMessage to which this read
report is related.

2. For each of the items in the deliveryInfo array attribute of
mmsMessage whose recipient attribute matches one of the recipients
of the MMS to which the read report is related,

1. set its readStatus attribute:
1. to 'success', in case the message has been read, i.e. if the

value of the X-Mms-Read-Status element in the M-Read-
Orig.ind Protocol Data Unit [[!MMS13]] is 'Read', or

2. to 'error', in case the message has been deleted without
being read, i.e. if the value of the X-Mms-Status element
in the M-Read-Orig.ind Protocol Data Unit [[!MMS13]] is
'Deleted without being read'.

2. set its readTimestamp attribute to the read time, i.e. the 'Date'
field in the M-Read-Orig.ind Protocol Data Unit [[!MMS13]], in
case the message has been read.

3. Queue a task to fire an event named readsuccess or readerror
respectively if the message has been read or not, with

1. the messageID attribute set to the messageID attribute of
mmsMessage,

2. the serviceID attribute set to the serviceID attribute of
mmsMessage,

3. the recipients attribute set to the subset of the original
recipients of mmsMessageto which this read report is related,
and

4. in case the message has been read, with each of the items in
the readTimestamps attribute set to the read time of the MMS

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 162 of 298

message by the corresponding recipient, i.e. that in the same
position of the recipients array.

4. Queue a task to fire a system message of type ReadReport named
readsuccess or readerror respectively if the message has been read or
not, with

1. the messageID attribute set to the messageID attribute of
mmsMessage,

2. the serviceID attribute set to the serviceID attribute of
mmsMessage,

3. the recipients attribute set to the subset of the original
recipients of mmsMessageto which this read report is related,
and

4. in case the message has been read, with each of the items in
the readTimestamps attribute set to the read time of the MMS
message by the corresponding recipient, i.e. that in the same
position of the recipients array.

The clear method when invoked MUST run the following steps:

1. Make a request to the system to delete all the messages associated to
the messaging service with identifier equal to the serviceID parameter.

2. Let promise be a new Promise object and resolver its associated
resolver

3. Return promise to the caller.
4. If an error occurs invoke resolver's reject algorithm with error as the

value argument.
5. When the request has been successfully completed:

1. Let serviceID be the serviceID parameter passed in the request
2. Invoke resolver's fulfill algorithm with serviceID as the value

argument.

H.10. EVENT HANDLERS

The following are the event handlers (and their corresponding event types)
that MUST be supported as attributes by the MmsManager object.

event handler event name event type short
description

onreceived received MessagingEvent
handles
received
messages

onsent sent MessagingEvent
handles
sent
messages

ondeliverysuccess deliverysuccess DeliveryReportEvent

handles
successful
delivery
reports

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 163 of 298

event handler event name event type short
description

ondeliveryerror deliveryerror DeliveryReportEvent

handles
failure
delivery
reports

onreadsuccess readsuccess ReadReportEvent
handles
successful
read reports

onreaderror readerror ReadReportEvent
handles
failure read
reports

onserviceadded serviceadded ServiceChangeEvent
handle new
messaging
services

onserviceremoved serviceremoved ServiceChangeEvent

handle
disabled
messaging
services

H.11. MMSSENDPARAMETERS DICTIONARY

optional DOMString serviceID
Identifier of the service through which the message is requested to be sent.

boolean requestDeliveryReport
Flag to indicate whether a delivery report is requested.

boolean requestReadReport
Flag to indicate whether a read report is requested.

H.12. SMSMESSAGE INTERFACE

The SmsMessage interface represents an SMS message as defined in [[!GSM-
SMS]]. This interface is not intended to represent binary SMS, which are out
of the scope of this API.

readonly attribute DOMString messageID
MUST return the identifier of the message.

readonly attribute MessageType type
MUST return the type of message, i.e. 'sms'.

readonly attribute DOMString serviceID
MUST return the messaging service id used to send / receive this message.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 164 of 298

readonly attribute DOMString from
MUST return the sender of the message, i.e. the TP Originating Address
(TP-OA) of the SMS message.

readonly attribute Date timestamp
MUST return, for received messages the time the message reached the
Short Message Center, indicated in the TP-Service-Centre-Time-Stamp (TP-
SCTS) parameter of the SMS message, and for sent messages the the
device's date when the SMS message was sent, i.e. when the SMS-SUBMIT
Protocol Data Unit was sent.

readonly attribute boolean read
MUST return 'true' if the message has been marked as read, or 'false'
otherwise.

readonly attribute DOMString to
MUST return the recipient of the message, i.e. the TP Destination Address
(TP-DA) of the SMS message.

readonly attribute DOMString body
MUST return text of the SMS message, i.e. the SM element contained
within the TP User Data (TP-UD) field of the SMS message.

readonly attribute SmsState state
MUST return the status of the SMS message.

readonly attribute DeliveryStatus deliveryStatus
MUST return the delivery status of the SMS message.

readonly attribute Date? deliveryTimestamp
MUST return for sent messages the delivery date as reported in the TP-
Discharge-Time (TP DT) parameter included in the SMS-STATUS-REPORT
Protocol Data Unit or null if there is no positive knowledge about the
delivery of the message. MUST return null for received messages.

readonly attribute MessageClass messageClass
MUST return the SMS message class, according to the value indicated in
the TP-Data-Coding-Scheme (TP-DCS) field of the SMS.

H.13. MMSMESSAGE INTERFACE

The MmsMessage interface represents an MMS message, as defined in
[[!MMS13]].

readonly attribute DOMString messageID
MUST return the identifier of the message.

readonly attribute MessageType type
MUST return the type of message, i.e. 'mms'.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 165 of 298

readonly attribute DOMString serviceID
MUST return the messaging service id used to send / receive this message.

readonly attribute DOMString from
MUST return the sender of the message, i.e. the 'From' field of the MMS
message.

readonly attribute Date timestamp
MUST return, for received messages the time the message reached the
Multimedia Messaging Service Center, i.e. the 'Date' field of the MMS
message, for received but not downloaded messages the timestamp of the
binary SMS message used to transport the MMS notification and for sent
messages the device's date when the MMS message was sent, i.e. the date
when the M-Send.req Protocol Data Unit was sent by the MMS Client.

readonly attribute unsigned long? expiry
MUST return the number of seconds the message will be stored in the
Multimedia Messaging Service Center and thus available for download.
This time is calculated since the date the MMS Notification was sent.

readonly attribute boolean read
MUST return 'true' if the message has been marked as read, or 'false'
otherwise.

readonly attribute DOMString[] to
MUST return an array containing the recipient(s) included in the 'To' field
of the MMS message.

readonly attribute DOMString[] cc
MUST return an array containing the recipient(s) included in the 'Cc' field
of the MMS message.

readonly attribute DOMString[] bcc
MUST return an array containing the recipient(s) included in the 'Bcc' field
of the MMS message.

readonly attribute DOMString subject
MUST return the subject of the MMS message, corresponding to the
'Subject' field of the MMS message.

readonly attribute DOMString smil
MUST return the SMIL, i.e. the presentation element, unparsed as
DOMString, that the messaging client needs to use to determine the way
the content of the MMS message is displayed.

readonly attribute MmsAttachment[]? attachments
MUST return the set of attachments of the MMS message.

readonly attribute MmsState state
MUST return the status of the MMS message.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 166 of 298

readonly attribute MmsDeliveryInfo[] deliveryInfo
MUST return an array with each of the items indicating the delivery
status and, if applicable, the delivery time to each of the recipients of the
message.

readonly attribute boolean? readReportRequested
MUST return true in case the originator of a received message requested a
read report and false otherwise. MUST return null for sent messages.

H.14. MMSCONTENT DICTIONARY

DOMString subject
Indicates the subject of the MMS message, corresponding to the 'Subject'
field of the MMS message.

DOMString[] to
Indicates the recipient(s) included in the 'To' field of the MMS message.
There MUST be at least one recipient in any of the to, cc or bcc attributes.

DOMString[] cc
Indicates the recipient(s) included in the 'Cc' field of the MMS message.
There MUST be at least one recipient in any of the to, cc or bcc attributes.

DOMString[] bcc
Indicates the recipient(s) included in the 'Bcc' field of the MMS message.
There MUST be at least one recipient in any of the to, cc or bcc attributes.

DOMString smil
Contains the SMIL component, i.e. the presentation element that
determines the way the content of the MMS message MUST be displayed.

MmsAttachment[] attachments
Contains the set of attachments of the MMS message.

H.15. MMSATTACHMENT DICTIONARY

DOMString contentID
The Content-ID parameter that MAY be used to refer to the attachment
from the SMIL presentation object as described in [[!MMS13]] and
[[!MIME-ENC]]. At least one of contentID and contentLocation MUST be
specified if the MMS Message contains an SMIL presentation object.

DOMString contentLocation
The Content-Location parameter that MAY be used to refer to the
attachment from the SMIL presentation object as described in [[!MMS13]]
and [[!MIME-ENC]]. At least one of contentID and contentLocation MUST
be specified if the MMS Message contains an SMIL presentation object. It
may also be used as a hint to define the filename when the attachment is
stored at the file system.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 167 of 298

Blob content
The Blob object containing the media type and the content of the
attachment.

H.16. MMSDELIVERYINFO DICTIONARY

DOMString recipient
The recipient of the MMS to which the delivery status is related.

DeliveryStatus deliveryStatus
The delivery status of the MMS message to a specific recipient.

Date deliveryTimestamp
The time the message was delivered to the recipient, i.e. the 'Date' field
in the M-Delivery.ind Protocol Data Unit [[!MMS13]]. It is not provided if
there is no positive knowledge about the delivery of the message.

ReadStatus readStatus
The read status of the MMS message to a specific recipient.

Date readTimestamp
The time the message was read by the recipient, i.e. the 'Date' field in the
M-Read-Orig.ind Protocol Data Unit [[!MMS13]]. It is not provided if there
is no positive knowledge about the delivery of the message.

H.17. CONVERSATION INTERFACE

The Conversation interface represents a set of messages that are grouped
together either because they are exchanged among the same set of
participants or because they have the same subject.

readonly attribute DOMString conversationID
MUST return the identifier of the conversation, which is globally unique
within the implementation, i.e. there cannot be any other conversation with
the same identifier.

readonly attribute MessageType type
MUST return the type of conversation, with value 'participants' if the
conversation is defined as the set of messages exchanged among the same
set of parties, and 'subject' if the conversation is defined as the set of
messages with the same subject.

readonly attribute DOMString[] participants
MUST return an array containing the participants in the conversation. In
case the conversation is of type 'subject' and there are messages in the
conversation with a different set of participants then this attribute MUST
return the union of the participants of all the messages in the conversation.

readonly attribute DOMString subject
MUST return the subject of the conversation, if there is a single one.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 168 of 298

readonly attribute DOMString[] messageTypes
MUST return an array contining the different types of messages included
in the conversation.

readonly attribute unsigned long messageCount
MUST return the number of messages in the conversation.

readonly attribute unsigned long unreadCount
MUST return the number of unread messages in the conversation.

readonly attribute DOMString lastMessageID
MUST return the identifier of the message in the conversation with the
most recent timestamp.

readonly attribute MessageCursor cursor
MUST return the MessageCursor to access the messages in this
conversation.

H.18. MESSAGINGCURSOR INTERFACE

The MessagingCursor interface allows to iterate through a list of
Conversation elements or of messages (SmsMessage and/or MmsMessage
elements).

A MessagingCursor always has, an associated request which is the Promise
that created it.

As soon as the MessagingCursor is accessing an element, it MUST put its
associated request in the 'processing' readyState, and set the result to null.
Then, the UA MUST fetch the next/previous element asynchronously. When the
element is retrieved, the associated request's readyState must be set to 'done'
and the result must point to the cursor. If no element was found, the cursor's
element property must return null.

readonly attribute any? element
This property MUST return the currently accessed element. If the cursor
went past the last element or if it is currently accessing the next element,
it MUST return null.

void next()
When this method is called, the cursor MUST change its internal state to
accessing an element and proceed to access to the next element.
If this method is called while the cursor is in the process of accessing
an element, the method MUST throw an "InvalidStateError" error as
defined in [[!DOM4]].

void previous()
When this method is called, the cursor MUST change its internal state to
accessing an element and proceed to access to the previous element.
If this method is called while the cursor is in the process of accessing

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 169 of 298

an element, the method MUST throw an "InvalidStateError" error as
defined in [[!DOM4]].

H.19. RECEIVEDMESSAGE INTERFACE

The ReceivedMessage interface represents a system message related to a
received message. This event is originated from the system and will start the
application if it is not currently running.

The application that consumes this API SHOULD set a message handler for the
ReceivedMessage system message to listen for when a system message related
to a received message is fired.

readonly attribute (SmsMessage or MmsMessage) message
MUST return the SmsMessage or MmsMessage object to which this system
message is related.

H.20. DELIVERYREPORT INTERFACE

The DeliveryReport interface represents a system message related to a
delivery report of a sent message. This event is originated from the system and
will start the application if it is not currently running.

The application that consumes this API MAY set a message handler for the
DeliveryReport system message to listen for when a system message related
to a received delivery report is fired.

readonly attribute DOMString serviceID
MUST return the identifier of the service used to send the message to
which this delivery report is related.

readonly attribute DOMString messageID
MUST return the identifier of the message to which this delivery report is
related.

readonly attribute DOMString[] recipients
MUST return an array containing the addresses of the subset of the original
recipients of the message to which this delivery report is related. As
delivery reports related to just part of the recipients of the MMS message
are possible, this array may not contain the full list of recipients to which
the MMS message was sent. If the delivery report is related to an SMS
message then the array will contain a single item corresponding to the
single recipient of the SMS message.

readonly attribute Date[]? deliveryTimestamps
MUST return an array containing the delivery dates for each of the
recipients to which this delivery report event relates. Each element in the
array refers to the recipient in the same position of the recipients array.
It MUST return null if case of delivery failure (e.g. message expired)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 170 of 298

H.21. READREPORT INTERFACE

The ReadReport interface represents a system message related to a read
report of a sent MMS message. This event is originated from the system and
will start the application if it is not currently running.

The application that consumes this API MAY set a message handler for the
ReadReport system message to listen for when a system message related to a
received read report is fired.

readonly attribute DOMString serviceID
MUST return the identifier of the service used to send the message to
which this read report is related.

readonly attribute DOMString messageID
MUST return the identifier of the message to which this read report is
related.

readonly attribute DOMString[] recipients
MUST return an array containing the addresses of the subset of the original
recipients of the message to which this read report is related. As read
reports related to just part of the recipients of the MMS message are
possible, this array may not contain the full list of recipients to which the
MMS message was sent.

readonly attribute Date[]? readTimestamps
MUST return an array containing the read dates by each of the recipients
to which this read report event relates. Each element in the array refers to
the recipient in the same position of the recipients array.

H.22. MESSAGINGEVENT INTERFACE

The MessagingEvent interface represents events related to a message sent or
received.

readonly attribute (SmsMessage or MmsMessage) message
MUST return the SmsMessage or MmsMessage object to which this event is
related.

H.23. DELIVERYREPORTEVENT INTERFACE

The DeliveryReportEvent interface represents events related to a delivery
report of a sent message.

readonly attribute DOMString serviceID
MUST return the identifier of the service used to send the message to
which this delivery report event is related.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 171 of 298

readonly attribute DOMString messageID
MUST return the identifier of the message to which this delivery report
event is related.

readonly attribute DOMString[] recipients
MUST return an array containing the addresses of the subset of the original
recipients of the message to which this delivery report event is related. As
delivery reports related to just part of the recipients of the MMS message
are possible, this array may not contain the full list of recipients to which
the MMS message was sent. If the delivery report is related to an SMS
message then the array will contain a single item corresponding to the
single recipient of the SMS message.

readonly attribute Date[]? deliveryTimestamps
MUST return an array containing the delivery dates for each of the
recipients to which this delivery report event relates. Each element in the
array refers to the recipient in the same position of the recipients array.
It MUST return null if case of delivery failure (e.g. message expired)

H.24. READREPORTEVENT INTERFACE

The ReadReportEvent interface represents events related to a read report of a
sent message.

readonly attribute DOMString serviceID
MUST return the identifier of the service used to send the message to
which this read report event is related.

readonly attribute DOMString messageID
MUST return the identifier of the message to which this read report event
is related.

readonly attribute DOMString[] recipients
MUST return an array containing the addresses of the subset of the original
recipients of the message to which this read report event is related. As
read reports related to just part of the recipients of the MMS message are
possible, this array may not contain the full list of recipients to which the
MMS message was sent.

readonly attribute Date[]? readTimestamps
MUST return an array containing the read dates for each of the recipients
to which this read report event relates. Each element in the array refers to
the recipient in the same position of the recipients array.

H.25. SERVICECHANGEEVENT INTERFACE

The ServiceChangeEvent interface represents events related to messaging
services enabled or disabled.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 172 of 298

readonly attribute DOMString serviceID
MUST return the identifier of the messaging service which is enabled or
disabled.

H.26. MESSAGINGFILTER DICTIONARY

The MessagingFilter Dictionary represents a filter that is used to select a
set of messages (e.g. to be provided upon invoking the findMessages or the
findConversations method in the Messaging interface).

MessageType type
Indicates whether just the SMS or MMS messages are to be provided in the
results of this filter, respectively if it is set to string value 'SMS' or 'MMS'.

Date startDate
Indicates that messages with timestamp previous to this date will not be
provided in the results of this filter.

Date endDate
Indicates that messages with timestamp after this date will not be provided
in the results of this filter.

DOMString from
Indicates that just messages sent from this number are to be provided in
the results of this filter.

sequence<DOMString> recipients
Indicates that just messages sent to one of these numbers are to be
provided in the results of this filter.

(SmsState or MmsState) state
Indicates whether the results of this filter just needs to return the messages
matching the indicated state.

DOMString serviceID
Indicates that just messages associated to the messaging service with this
identifier are to be provided in the results of this filter.

boolean read
Indicates whether just read or unread messages are to be provided in the
results of this filter, respectively if it is set to 'true' or 'false'.

H.27. FILTEROPTIONS DICTIONARY

DOMString sortBy
Indicates the attribute on which the filtered messages are sorted.

DOMString sortOrder
Indicates the order on which the filtered messages are sorted with possible
values 'ascending' and 'descending'.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 173 of 298

unsigned long limit
Indicates the maximum number of messages that can be returned as a
result of applying the corresponding filter.

H.28. ENUMERATIONS

The attibute type can have the following values:

sms
Corresponding to SMS message(s).

mms
Corresponding to MMS message(s).

The attibute messageClass in an SmsMessage can have the following values:

class-0
The message is of class 0.

class-1
The message is of class 1.

class-2
The message is of class 2.

class-3
The message is of class 3.

normal
The message is of class 1 (same as 'class-1').

The attibute state in an SmsMessage can have the following values:

received
The message is an inbound message.

sending
The message is in process of being sent.

sent
The message has been successfully sent.

failed
The message is an outbound message whose submission has failed.

The attibute state in an MmsMessage can have the following values:

not-downloaded
The message is an inbound message, for which an MMS notification has
been received but that has not yet been downloaded.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 174 of 298

fetching
The message is an inbound message, for which an MMS notification has
been received, and whose download has started and not yet finished.

received
The message is an inbound message.

sending
The message is in process of being sent.

sent
The message has been successfully sent.

failed
The message is an outbound message whose submission has failed.

The attibute deliveryStatus can have the following values:

success
The message has been succesfully delivered to the recipient.

pending
The message is pending delivery.

error
The delivery of the message has failed.

not-applicable
The delivery status is not applicable either because a delivery report has
not been requested or because the message is an inbound message

The attibute readStatus can have the following values:

success
The message has been read by the recipient.

pending
There is no positive knowledge that the message has been read by the
recipient.

error
The delivery of the message has failed.

not-applicable
The read status is not applicable either because a read report has not been
requested or because the message is an inbound message

The MMS fetch mode can have the following values:

automatic
MMS message is fecthed right after the reception of the MMS notification.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 175 of 298

automatic-home
MMS message is fecthed right after the reception of the MMS notification
if the device is located in the home network, i.e. not roaming, otherwise
the message will be fetched upon the device entering in the home network
again or the user manually requesting it.

manual
The message is not fecthed until the user manually requests it.

never
MMS message retrieval is completely disabled.

H.29. ACKNOWLEDGEMENTS

The editors would like to express their gratitude to the Mozilla B2G Team and
specially to Jonas Sicking, Mounir Lamouri and Vicamo Yang for their technical
guidance, implementation work and support.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 176 of 298

I. TELEPHONY API

W3C Editor's Draft 14 October 2014

This version:
http://www.w3.org/2012/sysapps/telephony/

Latest published version:
http://www.w3.org/TR/telephony/

Latest editor's draft:
http://www.w3.org/2012/sysapps/telephony/

Editors:
Marcos Cáceres, Mozilla
José M. Cantera, Telefónica
Eduardo Fullea, Telefonica
Zoltan Kis, Intel
John Lyle, University of Oxford

Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
W3C liability, trademark and document use rules apply.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 177 of 298

This specification defines an API to manage telephone calls. A typical use
case of the Web Telephony API is the implementation of a 'Dialer' application
supporting multiparty calls and multiple telephony services.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 178 of 298

Implementors should be aware that this specification is not stable.
Implementors who are not taking part in the discussions are likely to
find the specification changing out from under them in incompatible
ways. Vendors interested in implementing this specification before it
eventually reaches the Candidate Recommendation stage should join the
aforementioned mailing lists and take part in the discussions.

Significant changes to this document since last publication are documented in
the Changes section.

I.1. INTRODUCTION

The Web Telephony API allows applications to manage interaction with
telephony call signaling, but does not handle audio channels management.

An example of making a telephony call is provided below:

var telCall = navigator.telephony.dial('+1234567890');

telCall.onactive = function(e) {
window.console.log('Connected!');

}

telCall.ondisconnected = function(e) {
window.console.log('Disconnected!');
// update call history

}

telCall.onerror = function(e) {
window.console.error(e);

}

The use cases for this specification are collected in the wiki page of this API.

The following specifications informed the design of the Web Telephony API:
for GSM the [[!GSM-CALL]] suite, for IMS/SIP the [[!IMS]] suite, for XMPP
the [[!JINGLE]] specification. Note, however, that IMS/SIP and XMPP are not
supported in this version.

It is likely that the same API would work also for SIP and XMPP calls with
the exception of multiparty call handling, which is modeled after the cellular
multiparty calls. Future versions of this specification will probably add SIP and
XMPP conference support.

It is under discussion whether a system message should be propagated when
a CDMA telephony call is active, since not all CDMA networks support
concurrent services. Therefore, many applications will lose their data
connection when the end user is in a voice call.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 179 of 298

http://www.w3.org/wiki/System_Applications_WG:_Telephony_API

This specification defines conformance criteria that apply to a single product:
the user agent that implements the interfaces that it contains.

Implementations that use ECMAScript to implement the APIs defined in this
specification MUST implement them in a manner consistent with the
ECMAScript Bindings defined in the Web IDL specification [[!WEBIDL]], as this
specification uses that specification and terminology.

I.2. DEPENDENCIES

This specification depends on the following interfaces and concepts defined in
other specifications.

The following dependencies are defined in [[!HTML]]: EventHandler interface,
queue a task, event handler, origin, task source.

The following dependencies are defined in [[!DOM4]]: the Event and the
Promise interfaces, the concepts of a resolver, fire an event.

I.3. TELEPHONY SERVICES

A telephony service manages telephony operations associated with a
subscriber identity, which is registered with a telephony service provider. For
example, in cellular telephony, a telephony service is associated with SIM card
(Subscriber Identity Module). A telephony service can use different protocols
for telephony signaling and media (e.g. GSM, CDMA, VoLTE, etc.) with the
same identity.

Each telephony service has a unique telephony service id, which identifies a
telephony service together with a user identity in the system. For telephony
services that make use of a SIM card, it is RECOMMEDED that the ICC-ID be
used for the service identifier.

It is strongly RECOMMENDED a implementations do not use use the MSISDN
as the telephony service id. The MSISDN cannot guarantee uniqueness.

A user agent can access zero or more telephony services. Which telephony
services are available to the user agent is dictated by policy, or by the user
choosing which services are available to the user agent. When one or more
telephony services is available to the user agent, one serves as the default
telephony service.

In the API, telephony services are represented by a DOMString that maps to a
telephony service id for each telephony service available to an origin.

Access to a telephony service by any origin is restricted by a security policy.
See the security and privacy considerations section for more details.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 180 of 298

http://www.whatwg.org/specs/web-apps/current-work/#eventhandler
http://www.whatwg.org/specs/web-apps/current-work/#queue-a-task
http://www.whatwg.org/specs/web-apps/current-work/#event-handlers
http://www.whatwg.org/specs/web-apps/current-work/#origin
http://www.whatwg.org/specs/web-apps/current-work/#task-source
http://dom.spec.whatwg.org/#event
http://dom.spec.whatwg.org/#promise
http://dom.spec.whatwg.org/#concept-resolver
http://dom.spec.whatwg.org/#concept-event-fire

A telephony service observes the call states of a telephony call in the supported
telephony backend(s) and networks and reflects those changes in the API
through [[!DOM4]] events and promises.

I.3.1. Changing telephony services

Telephony services can be added or removed from the system at any time (e.g.,
the user pops out the SIM card or adds a different SIM card; the user tells
the system to only allow certain applications to access a particular telephony
service, etc.).

When a telephony service is either added or removed in the system, the user
agent MUST run the steps to change the telephony service:

1. Let name be serviceremoved if the telephony service was removed, or
serviceadded otherwise.

2. Let event be a new TelephonyServiceEvent, with name as the event
name, which does not bubble, is not cancelable, has no default action,
and whose serviceId attribute is set to the telephony service id of the
telephony service that initiated this algorithm.

3. If the service has been removed and it's the default telephony service for
the origin, then change default telephony service.

4. Queue a task to fire an event event at the TelephonyManager.

I.3.2. Default Telephony Service

The default telephony service is the telephony service that serves as default
for telephony operations for the origin of an application. The default telephony
service can be changed by the user, and if supported, through the
changeDefaultService() method of the TelephonyManager object.

If there is no default telephony service for the origin, the user agent SHOULD
use the system's default telephony service, if available and if allowed by policy.
If there are no telephony services available to use as the default for the origin,
the default telephony service is null.

When there is a need to changes default telephony service, the user agent
MUST:

1. Let service id be the telephony service id of the new default telephony
service, or null otherwise.

2. Let event be a new TelephonyServiceEvent with the event name
defaultchanged, which does not bubble, is not cancelable, has no
default action, and whose serviceId attribute to service id.

3. Queue a task to change the defaultServiceId attribute of the
TelephonyManager object to sercive id, and fire event at the
TelephonyManager.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 181 of 298

I.3.3. Telephony Calls

A telephony call results from a telephony service's attempt to establish a
connection for communication between two or more parties. Telepony calls
involving more than two parties are referred to as a multiparty call.

In the process of establishing and maintaining a connection between multiple
parties, a telephony call transitions through various call states. A telephony
call is always in some call state, which can change over time.

Telephony calls initiated by a telephony service of the system is an outbound
call. Conversely, a telephony calls from a remote party is an inbound call.

Every telephony call has a call id, which is a string that uniquely identifies the
call and call history.

An active call is a Call in the active state representing a connected call which
is bound to the media input and output devices (e.g. microphone, speaker, tone
generator). Note that a call on hold is also active from a call signaling point of
view, but not bound to media input and output devices.

Whenever a call is added to or removed from the calls array, the user agent
MUST queue a task to fire an event named callschanged.

Within the API, a telephony call is represented by the Call typedef - which
encapsulates both objects that implement the TeleponyCall interface and the
ConferenceCall interface.

I.3.4. Call typedef

I.3.5. Multiparty calls

A multiparty call (also commonly referred to as a conference call) is a
telephony call with multiple remote party participants, which is controlled as
a single telephony call, i.e. it can be held, activated, disconnected from all
participants. Other calls can be joined with a multiparty call.

Every multiparty call has a unique conference id that identifies a multiparty
call in the system.

A remote party id uniquely identifies a participant (a.k.a. remote party) in a
telephony call in the given telephony service, such as a phone number.

This of the API version supports GSM multiparty calls and CDMA 3-way calls.

In the API, a multiparty call is represented by any object that implements the
ConferenceCall interface.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 182 of 298

The following needs to be described in an algorithm: For multiparty calls,
the implementation MUST generate a unique identifier stored in the callId
attribute. In GSM, the callId of any participating call could be used in a
multiparty operation, and the telephony network will reply with using the
same value. But for forward compatibility reasons, the implementation MUST
generate a separate callId value for the multiparty call, which MUST be
unique in the system and the local call history. For GSM multiparty
functionality, The implementation MUST map this to an appropriate
transaction identifier accepted by the telephony service. Also, the transaction
identifiers received from the network MUST be mapped back by the
implementation to the unique conference call identifier of the multiparty call.

I.4. CALL STATES

A call state represents the state of interaction between a telephony service, the
telephony network, the API, and one or more remote parties.

Within the API, the call states are represented by the CallState enum.

The call states referenced in this API are:

dialing
An outbound call is being dialed by a telephony service.

connecting
A request to establish the call has been made and it is progressing.

alerting
The destination number has been reached and alerting is taking place.

active
The call is ongoing.

incoming
An incoming call is being received whilst no other call is progressing.

waiting
An incoming call that has been received whilst there was another call
progressing, and the call waiting service is active.

accepted
An incoming call has been accepted and is being connected.

holding
The call is being put on hold.

held
The call has been put on hold.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 183 of 298

resuming
The call, which was on hold, is being resumed.

redirecting
The call is being redirected to another remote party from the same
telephony service.

transferring
The call is being transferred to another remote party from the same
telephony service.

disconnecting
A request to disconnect the call has been made and it is progressing.

disconnected
The call has been disconnected and this object is invalid for call control.

joining
The call is being joined with another call to become a multiparty call.

multiparty
The call is a multiparty call.

splitting
The call is being split from a multiparty call.

I.4.1. State changes

Whenever there is a change in the state attribute the user agent MUST:

1. Queue a task to fire an event named statechange with the new value of
the state attribute.

Since call state transitions depend on protocol, network equipment, modem,
etc., the implementation MUST NOT fire error events on assumed erroneous
state transitions. MUST always re-synchronize any eventual internal states to
the current call state reported by the telephony system. The implementation
MUST NOT set the call state to any other value than specified in the
descriptions of the methods of this interface.

Since call states can differ depending on the protocol, do we need to expose
the service and the protocol used for making the call? See issue 125.

Note that compliant implementations may not be reporting such events when
they occur (e.g. OTA SIM update or hot-swappable SIM cards). See issue 127.

I.4.2. CallState enum

enum CallState {
"dialing",

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 184 of 298

https://github.com/sysapps/telephony/issues/125
https://github.com/sysapps/telephony/issues/127

"connecting",
"alerting",
"active",
"incoming",
"waiting",
"accepted",
"holding",
"held",
"resuming",
"redirecting",
"transferring",
"disconnecting",
"disconnected",
"joining",
"multiparty",
"splitting"

};

Some of these states are soft states, that is, transitory states in which the
application is placed after making a request to the telephony system and until
it is completed. For instance the application remains in "holding" state since
it invokes the hold() method and until the telephony system actually holds the
call. In some implementations these soft states can be skipped. The following
are the soft states defined by this specification: "accepted", "disconnecting",
"holding", "resuming".

On the contrary, hard states MUST be supported by the implementation:
"dialing", "alerting", "active", "disconnected", "incoming", "waiting", "held".
For calls participating in multiparty calls, the following additional call states
MUST be supported: "joining", "splitting", "multiparty". For call transfer
functionality, the additional "transferring" state MUST be supported.

I.4.6. Receiving calls (inbound states)

The device can receive phone calls from any active telephony service, even
simultaneously, in which case the user agent arbitrates the calls either by a
policy, or by the user by choosing which call to accept.

For call setup on received calls, the following call states MUST be supported
in this order:

1. "incoming"/"waiting".
2. "accepted".
3. "active".

On received calls, telephony protocols also use a "ringing" state, set by the
mobile terminal when local call alerting starts, in order to notify the remote
party about the ongoing alerting (ringing can actually be e.g. a beep, ring
tone, or vibration pattern). This is considered to be responsibility of
implementations: if the modem expects this state to be set, implementations

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 185 of 298

MUST make sure to set it. Dialer applications are not expected to set this state
in the current version of the specification.

CDMA cannot report all these states in the expected sequence. The ‘connected’
state (i.e. when the mobile station send the Service Connect Completion
Message or Connect Order, depending on whether the call is mobile originated
or terminated) is immediately followed by voice media transmission – there is
transition to ‘active’ before the media arrives. Therefore it should be up to the
implementation to determine which events to fire and in which order. Dialer
applications need to be prepared to handle such cases.

Upon a new incoming or waiting call, the user agent MUST execute the
following steps:

1. Let incomingCall be a new instance of TelephonyCall.
2. Set the state of incomingCall to "incoming" in case there is no other

call in active state, or otherwise set it to "waiting".
3. Add incomingCall to the calls array.
4. Queue a task to fire an event named statechange at the incomingCall

object.
5. Queue a task to fire an event named incoming at the TelephonyManager

object managing the call.
6. Queue a task to fire an event named callschanged at the

TelephonyManager object managing the call.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 186 of 298

The figure depicts the most usual state transitions for received calls.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 187 of 298

I.4.7. Making calls (outbound states)

The following needs to be redefined algorithmically in terms of the telephony
service.

To make a call with a remote party identifier, optionally a telephony service,
and optionally a hide caller id, the user agent MUST ...

Even if there is no SIM card and no other telephony services are available,
but emergency calls are known to be possible (e.g. because a cellular modem
is present), it is considered as a default service with only emergency call
capability, and the implementation MUST define a telephony service id for
it. When not even emergency calls are possible (e.g. it is a purely IP based
implementation and there is no cellular modem), the implementation MAY use
empty string for default telephony service id, but it is encouraged that a default
service is created, with the methods throwing a NotSupported error.

For making a call, the telephony service transitions through the following
states in order. Errors can occur at each state, which can result in the call
becoming disconnected:

1. dialing
2. alerting
3. active

On the telephony services which support the "connecting" call state (e.g.
GSM and CDMA, for call routing, forwarding, voicemail handling etc),
implementations SHOULD support this state too, between the "dialing" and
"alerting" states. Dialer applications can associate the protocol with the
telephony service used for the call.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 188 of 298

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 189 of 298

The figure depicts the most usual state transitions for dialed calls.

I.5. DISCONNECTING CALLS

The reasons why a call can become disconnected are as follows. Within the
API the following disconnection reasons are represented by the the
DisconnectReason enum.

local
The call was disconnected by the user, or the device, and no more specific
reason is known.

remote
The call was disconnected by the remote party, and no more specific reason
is known.

network
The call was disconnected by the network, and no more specific reason is
known.

busy
The call was disconnected by the network, because the remote party was
busy.

rejected
The call was disconnected because the remote party rejected the call.

redirected
The call has been redirected to another subscriber.

unreachable
The call was disconnected by the network, because the remote party was
unreachable by the network.

no-answer
The call was disconnected by the network, because the remote party has
not answered and the call has timed out.

network-unreachable
The call was disconnected because the network was unreachable.

barred
The call was disconnected because it was barred.

no-service
The call was not made because there is no telephony service set up and
enabled (e.g. no SIM card).

invalid-number
The call was disconnected by the network, because the remote party
identifier was invalid.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 190 of 298

When a telephony service is notified of call disconnection of the Call object
telCall, it MUST run the steps to disconnect:

1. Queue a task to:
1. Remove the telCall object from the calls array.
2. set the state of telCall to "disconnected".
3. fire an event named statechange at the telCall object.
4. fire an event named disconnected at the telCall object.

The param attribute of the disconnected event MUST be set to the
DisconnectReason, if available, or otherwise it MUST be set to null. At least
the following values MUST be supported for the disconnect reason: "local",
"remote" and "network". The rest of the DisconnectReason values SHOULD be
supported.

I.5.1. DisconnectReason enum

enum DisconnectReason {
"local",
"remote",
"network",
"busy",
"rejected",
"redirected",
"unreachable",
"no-answer",
"network-unreachable",
"barred",
"no-service",
"invalid-number"

};

I.6. TASK SOURCE

The task source for all tasks queued in this specification is the telephony task
source.

I.7. EXTENSIONS TO NAVIGATOR OBJECT

The TelephonyManager interface is exposed on [[!HTML]]'s Navigator object.

readonly attribute TelephonyManager telephony

I.7.1. The telephony attribute

When getting the telephony attribute, the user agent MUST return the
TelephonyManager object, which provides the ability to interface with the
telephony service of the device.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 191 of 298

http://www.whatwg.org/specs/web-apps/current-work/#dom-navigator

I.8. TELEPHONYMANAGER INTERFACE

The TelephonyManager interface provides access to telephony functionality,
and manages the lifecycle of the Call objects.

readonly attribute Call? activeCall
readonly attribute Call[] calls
readonly attribute DOMString[] emergencyNumbers
readonly attribute DOMString[] serviceIds
readonly attribute DOMString? defaultServiceId
Promise changeDefaultService(DOMString serviceId)
TelephonyCall dial (DOMString remoteParty, optional DialOptions
options)
Promise sendTones(DOMString tones, optional ToneOptions options)
Promise startTone(DOMString tone, optional ToneOptions options)
Promise stopTone(optional DOMString serviceId)
attribute EventHandler onincoming
attribute EventHandler oncallschanged
attribute EventHandler onserviceadded
attribute EventHandler onserviceremoved
attribute EventHandler ondefaultchanged

I.8.1. The activeCall attribute

When getting the activeCall attribute, the user agent MUST return the Call
object that represents the active call. If there is no active Call return null.

I.8.2. The calls attribute

When getting the calls attribute, the user agent MUST return an array, which
can be empty, of Call objects managed by this objects.

TelephonyCall objects belonging to a multiparty call are managed by the
corresponding ConferenceCall object and won't be present in this array.

I.8.3. The emergencyNumbers attribute

When getting the emergencyNumbers attribute, the user agent MUST return
an array, which can be empty, of telephone numbers for the emergency services
in the current geographical area.

I.8.4. The serviceIds attribute

When getting the serviceIds attribute, the user agent MUST return an array,
which can be empty, of telephony service id's.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 192 of 298

I.8.5. The defaultServiceId attribute

When getting the defaultServiceId attribute, the user agent MUST return the
DOMString that represents the id of the default telephony service (if any).
Otherwise, it returns null.

I.8.6. The sendTones() method

The sendTones() method requests a telephony service emit one or more
[[!DTMF]] tones. When invoked, the user agent MUST run the following steps:

1. If the ToneOptions parameter specifies the serviceId to be used, then
validate and use that value, otherwise use the default telephony service
for sending the tones.

2. If the ToneOptions parameter specifies the tone duration, then validate
and use that value, otherwise use a default value.

3. If the ToneOptions parameter specifies the tone gap, then validate and
use that value, otherwise use a default value.

4. Request from the telephony system to send the specified tones.
5. Let promise be a new Promise object and resolver its associated

resolver.
6. Return promise to the caller and continue the following steps

asynchronously.
7. If the request to the telephony system is successful, or if the telephony

system does not support feedback about the result of the request, invoke
resolver's accept() method with no arguments.

8. If the request to the telephony system is unsuccessful, invoke resolver's
reject() method, with no arguments.

I.8.7. Tones

Tone value can be any of the following characters: 0-9; A-D; *; #.

The above needs to be converted to ABNF

I.8.8. The stopTone() method

The stopTone() method stops emitting a [[!DTMF]] tone in the default or the
specified telephony service. When invoked, the user agent MUST run the
following steps:

1. If the platform does not support long press [[!DTMF]] tones, throw a
NotSupported error.

2. If the provided parameters are invalid, or there is no tone playing on the
specified telephony service, throw an InvalidStateError error.

3. Otherwise, request from the telephony system to stop sending the
specified tone.

4. Let promise be a new Promise object and resolver its associated
resolver.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 193 of 298

5. Return promise to the caller and continue the following steps
asynchronously.

6. If the request to the telephony system is successful, or if the telephony
system does not support feedback about the result of the request, invoke
resolver's accept() method with no arguments.

7. If the request to the telephony system is unsuccessful, invoke resolver's
reject() method, with no arguments.

I.8.9. The startTone() method

The startTone() method starts emitting a [[!DTMF]] tone with the platform
default or specified delay, in the platform default or the specified telephony
service. A Promise object will be returned in order to notify the result of the
request.

When the startTone method is invoked, the user agent MUST run the
following steps:

1. If the platform does not support long press [[!DTMF]] tones, throw a
NotSupported error and finish these steps. In this case applications may
then use the sendTones method for sending [[!DTMF]].

2. If the ToneOptions parameter specifies the serviceId to be used, then
validate and use that value, otherwise use the default telephony service
for sending the tones.

3. If the ToneOptions parameter specifies the tone duration, then ignore
that value.

4. If the ToneOptions parameter specifies the tone gap, meaning the delay
before sending the tone, then validate and use that value, otherwise use
a default value.

5. Request from the telephony system to start sending the specified tone.
The tone SHOULD play until the stopTone method is called.

6. Let promise be a new Promise object and resolver its associated
resolver.

7. Return promise to the caller and continue the following steps
asynchronously.

8. If the request to the telephony system is successful, or if the telephony
system does not support feedback about the result of the request, invoke
resolver's accept() method with no arguments.

9. If the request to the telephony system is unsuccessful, invoke resolver's
reject() method, with no arguments.

I.8.10. The dial() method

The dial(remoteParty, options) method initiates a new telephony call. When
invoked the user agent MUST run the following steps:

Note that verification of the format of the remoteParty argument is left to the
telephony service. Providing an remoteParty in the invalid format will generally

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 194 of 298

result in the call disconnecting because the telephony service or telephony
network will deem it an invalid number.

1. Let remote party be the value of the value of the remoteParty argument.
2. Let service initially be either the default telephony service, if one is

available to the document's effective script origin, or null otherwise.
3. If the options argument is used, and it has a serviceId member:

1. If the value of serviceId member exactly matches the telephony
service id accessible to the document's effective script origin,
then let service be the telephony service that matches that value.

2. If the serviceId member is not an empty string and that does not
match any telephony service id available to the document, throw
a "NotFoundError" exception and terminate these steps.

4. If the options argument is used, and it has a hideCallerId member, then
let hide caller id be the value of the hideCallerId member.

5. Let telCall be a new instance of TelephonyCall.
6. Set telCall's remoteParty attribute to remote party id.
7. Return telCall and continue asynchronously.
8. Make a call using remote party, service and, and, if it was defined, hide

caller id.

I.8.11. The changeDefaultService() method

The changeDefaultService() method provides a means to change the default
telephony service used by the user agent. When invoked, the user agent runs
the the following steps:

1. Let potential service be the first argument passed to this operation.
2. Let promise be a new Promise object and resolver its associated

resolver.
3. Return promise and continue the following steps asynchronously.
4. If potential service does not exactly match the identifier of any telephony

service known to the user agent, run the following sub-steps and
terminate this algorithm:

1. Let error be a new DOMError object whose name is
"NotFoundError".

2. Invoke resolver's reject(value) method with error as the value
argument.

5. If potential service exactly matches the service id of the current default
telephony service, run the following sub-steps and terminate this
algorithm:

1. Invoke resolver's accept(value) method with potential service as
the value argument.

6. Otherwise, run the steps to change the default service, with potential
service as the telephony service id, and promise as the Promise.

The steps to change the default service are given by the following algorithm.
This abstract operation takes as an argument a telephony service id and an
optional Promise.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 195 of 298

http://dom.spec.whatwg.org/#concept-document
http://www.whatwg.org/specs/web-apps/current-work/multipage/origin-0.html#effective-script-origin
http://dom.spec.whatwg.org/#concept-document
http://www.whatwg.org/specs/web-apps/current-work/multipage/origin-0.html#effective-script-origin
http://dom.spec.whatwg.org/#concept-document
http://dom.spec.whatwg.org/#domerror
http://dom.spec.whatwg.org/#notfounderror

1. Make a platform/system specific request to the underlying system to
change from the current default telephony service to the one identified
by service id.

2. Possibly wait indefinitely.
3. If it's not possible (for whatever reason: timeout, security, etc.) to

change the default telephony service, and if promise was passed, run the
following sub steps and terminate this algorithm:

1. Let error be a new DOMError object whose name is
"NoModificationAllowedError".

2. Call resolver's reject(value) method with error as the value
argument.

4. Otherwise, queue a task to:
1. Change the defaultServiceId attribute to the telephony service id

of the new default telephony service.
2. If Promise was passed, invoke resolver's accept(value) method

with the id of the new default service as value argument.
3. Fire an event named servicechange at the telephony attribute of

the navigator object.

I.9. EVENT HANDLERS

The following are the event handlers are implemented by the
TelephonyManager interface.

event handler event name event type short
description

onincoming incoming TelephonyEvent
handles
incoming
and waiting
calls.

oncallschanged callschanged Event

handles
change in
the calls
array.

onserviceadded serviceadded TelephonyServiceEvent

handles a
new
enabled
telephony
service.

onserviceremoved serviceremoved TelephonyServiceEvent
handles a
disabled
telephony
service.

ondefaultchanged defaultchanged TelephonyServiceEvent

handles the
change of
default
telephony
service.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 196 of 298

I.9.12. DialOptions Dictionary

boolean hideCallerId
DOMString serviceId

I.9.13. The hideCallerId member

The hideCallerId member represents whether the local party identifier is to be
hidden or displayed to the remote party being called. If missing, the user agent
uses the default configuration for the telephony service that initiated the call.

Only some protocols support hidding the identity of the local party when
making a call.

I.9.14. The serviceId member

The serviceId member represents the telephony service id of the telephony
service to be used when dialing.

I.9.15. ToneOptions Dictionary

unsigned long duration
unsigned long gap
DOMString serviceId

I.9.16. The duration member

The duration member represents the duration (mark) in milliseconds of the
[[!DTMF]] tones to be sent.

I.9.17. The gap member

The gap member represents the duration in milliseconds of the time gap
(space) before a [[!DTMF]] tone.

I.9.18. The serviceId member

The serviceId member represents the telephony service id of the telephony
service to be used when dialing.

I.10. TELEPHONYEVENT INTERFACE

Defines telephony events for TelephonyCall state changes, including handling
incoming and waiting calls.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 197 of 298

readonly attribute Call call

I.10.1. The call attribute

When getting the call attribute, the user agent MUST return the TelephonyCall
that triggered the event.

I.11. TELEPHONYSERVICEEVENT INTERFACE

Defines a telephony event for notifying a changed telephony service.

readonly attribute DOMString serviceId

I.11.1. The serviceId attribute

When getting the serviceId, the user agent MUST return the telephony service
id of the telephony service that triggered the event.

I.11.2. TelephonyServiceEventInit dictionary

DOMString serviceId

I.11.3. The serviceId member

The serviceId member represents the telephony service id of a telephony
service.

I.12. CALLHANDLER INTERFACE

The CallHandler interface provides common properties and event handling
infrastructure that is implemented by other interfaces in this specification,
e.g. TelephonyCall and ConferenceCall. It serves as an editorial aid in this
specification, and has no functional utility on its own.

void resume()
void hold()
void disconnect()
readonly attribute DOMString callId
readonly attribute DOMString serviceId
readonly attribute CallState state
attribute EventHandler onerror
attribute EventHandler onstatechange

I.12.1. The resume() method

The resume() method requests the telephony system to resume resume a held
Call. When invoked, the user agent MUST run the following steps:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 198 of 298

http://www.w3.org/TR/WebIDL/#idl-implements-statements

1. If state is not equal to "held", then throw an InvalidStateError
exception.

2. Otherwise make a request to the telephony system to resume the call. If
the request is acknowledged, then set state to "resuming".

I.12.2. The hold() method

The hold() method requests the telephony system put the Call on hold. When
invoked, the user agent MUST run the following steps:

1. If state is not equal to active, then an throw and InvalidStateError
exception.

2. Otherwise make a request to the telephony system to hold the call.
3. Return, and continue these steps asynchronously.
4. If the request is acknowledged then set state to "holding".

I.12.3. The disconnect method

The disconnect method, if invoked on a TelephonyCall, it initiates releasing of
the telephony call. If invoked on a ConferenceCall, it initiates releasing the
multiparty call, and each participating TelephonyCall object.

If the telephony service is CDMA, throw "NotSupported" DOMError.

Depending on the protocol, there may be restrictions on methods. For instance,
GSM does not permit disconnecting a held call. Also, disconnecting a
participant in a held multiparty call is not supported. Also, if the controlling
party disconnects in IS-41 3-way call in CDMA, then all parties are
disconnected, and it is not possible for the controlling party to disconnect only
one participant (that participant must choose to hang up).

I.12.4. The callId attribute

When getting the callId attribute, the user agent MUST return the call id.

I.12.5. The serviceId attribute

When getting the serviceId attribute, the user agent MUST return the
telephony service id of the telephony service associated with this call.

I.12.6. The state attribute

When getting the state attribute, the user agent MUST return the CallState
value that represents the state of for the Call.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 199 of 298

I.12.7. Event handlers

The following are the event handlers are exposed by the CallHandler interface.
The event type is Event.

event handler event name

onstatechange statechange

onerror error

I.13. TELEPHONYCALL INTERFACE

Defines the object structure for controlling calls.

readonly attribute DOMString? remoteParty
readonly attribute DOMString? conferenceId
void accept()
void redirect(DOMString remoteParty)
void transfer(DOMString thirdParty)
ConferenceCall createConference()
attribute EventHandler ondialing
attribute EventHandler onalerting
attribute EventHandler onaccepted
attribute EventHandler onconnecting
attribute EventHandler onactive
attribute EventHandler ondisconnecting
attribute EventHandler ondisconnected
attribute EventHandler onholding
attribute EventHandler onheld
attribute EventHandler onresuming
attribute EventHandler onredirecting
attribute EventHandler ontransferring
attribute EventHandler onjoining
attribute EventHandler onmultiparty
attribute EventHandler onsplitting

I.13.1. The remoteParty attribute

When getting the remoteParty attribute, the user agent MUST return the
remote party id (e.g. telephone number) of the call participant. If not available
(e.g. callerId has been hidden), return null.

I.13.2. The conferenceId attribute

When getting the conferenceId attribute, if this call is managed as a part of a
multiparty call then the user agent MUST return the value of the conferenceId
attribute of the ConferenceCall multiparty call to which this call is part of.
Otherwise, return null.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 200 of 298

I.13.3. The accept() method

The accept() method accepts an incoming or waiting telephony call. When
invoked, the user agent MUST run the following steps:

1. If state is not equal to "incoming" or "waiting", then throw an
InvalidStateError exception.

2. Otherwise make a request to the telephony system to accept the call. If
the request is acknowledged then set state to "accepted".

I.13.4. The redirect() method

The telephony service in use needs to have the call deflection feature enabled
in order for this method to succeed. For instance, in GSM, the Call Deflection
supplementary service needs to be active.

The redirect() method initiates deflecting an incoming or waiting telephone
call to a remote party. The method takes one argument, which represents the
remote party to which the call is redirected. When invoked, the user agent
MUST run the following steps:

1. If the state is not "incoming" or "waiting", then throw an
InvalidStateError exception.

2. Otherwise make a request to the telephony system to redirect the call
to the number indicated in the remoteParty parameter, return, and
continue these steps asynchronously.

3. If the request is acknowledged, then set state to "redirecting".
4. When the telephony service is notified that the call has been successfully

redirected it MUST set state to "disconnected".

I.13.5. The transfer() method

The telephony service needs to have the call transfer feature enabled in
order for this method to succeed. For instance, in GSM, the Call Transfer
supplementary service needs to be active.

The transfer() method Initiates transferring the call to a new call between the
remote party of this call and another remote party, then disconnects the call.
The method takes one argument, which represents the remote party to which
the call is transferred. When invoked, the user agent MUST run the following
steps:

1. If state is not equal to "active" or "held", then throw an
InvalidStateError exception.

2. Otherwise make a request to the telephony system to transfer the call to
the number indicated in the thirdParty parameter. Note that in GSM this
requires putting the current call on hold, dialing a new call to the third
party, then initiating the call transfer procedure. If there is an error, the
original call MUST be resumed and then queue a task to fire a simple

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 201 of 298

event named "error" without modifying the call state. If the request is
acknowledged, then set state to "transferring".

3. When the telephony service is notified that the call has been successfully
transferred and the original call is disconnected, it MUST set state to
"disconnected".

I.13.6. The createConference() method

The createConference() method Creates a multiparty call from the current call.
On cellular telephony services, this happens by initiating merging the active
and held calls into a multiparty call. Using this method MUST be the only way
to create a ConferenceCall object. When invoked, the user agent MUST run the
following steps:

1. Let telCall be the telephony call on which this method was invoked.
2. Set the state of telCall to "joining".
3. Then, in cellular telephony services, make a request to the telephony

system to join the active and held calls into a multiparty call.
4. If one of the calls is already a ConferenceCall object, use it as confCall

in these steps.
5. Otherwise create a new ConferenceCall object with a unique conference

id, named confCall.
6. Set the state of confCall to "joining".
7. Return the confCall object, and continue these steps asynchronously.
8. If the request to the telephony system is successful,

1. set the conferenceId attribute of the participating calls to the
unique identifier generated for the multiparty call confCall.

2. Add the calls participating in the multiparty call to the calls
attribute of the confCall object, remove them from the calls array
of the TelephonyManager object, and set their state to
'multiparty'.

3. Add the confCall object to the calls array of the
TelephonyManager object.

4. Set the state of confCall to "active".
5. Queue a task to fire an event named participantadded at

confCall. object
6. Follow the state changes of confCall through the state change

events.

I.13.7. Event handlers

To handle changes in telephony state, the TelephonyCall interface implements
the following event handlers. The event type for the events is Event.

event handler event name / telephony state

ondialing dialing

onalerting alerting

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 202 of 298

onaccepted accepted

onconnecting connecting

onactive active

ondisconnecting disconnecting

ondisconnected disconnected

onholding holding

onheld held

onresuming resuming

onredirecting redirecting

ontransferring transferring

onjoining joining

onmultiparty multiparty

onsplitting splitting

I.14. CONFERENCECALL INTERFACE

Describes the object controlling multiparty calls, and managing the
TelephonyCall objects participating in the multiparty call.

readonly attribute DOMString conferenceId
readonly attribute TelephonyCall[] calls
void split(TelephonyCall participantCall)
attribute EventHandler onparticipantadded
attribute EventHandler onparticipantremoved
attribute EventHandler onjoining
attribute EventHandler onactive
attribute EventHandler onsplitting
attribute EventHandler onholding
attribute EventHandler onheld
attribute EventHandler onresuming
attribute EventHandler ondisconnecting
attribute EventHandler ondisconnected

I.14.1. The conferenceId attribute

When getting the conferenceId attribute, the user agent MUST return the
conference identifier unique in the system and in call history. It MUST NOT be
the empty string.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 203 of 298

I.14.2. The calls attribute

When getting the calls, the user agent MUST return the array of TelephonyCall
objects managed by the multiparty call object.

I.14.3. The code>split() method

The split() method requests the telephony system split the specified participant
TelephonyCall object, activate it and put this multiparty call on hold. The
method takes one argument, which represents the TelephonyCall object of the
call participant to be split from the multiparty call. When invoked, the user
agent MUST run the following steps:

1. If the provided participantCall does not identify a valid TelephonyCall
object which is part of this multiparty call, then an throw an
InvalidModificationError exception.

2. Otherwise, set the state of the participantCall and that of this
ConferenceCall object to "splitting".

3. Make a request to the telephony system to split the call participant from
the multiparty call.

4. Return, and continue these steps asynchronously.
5. If the request was successful, the telephony system will put the

multiparty call on hold and activate the split call. The implementation
MUST follow the state transitions on the calls as described in this
specification.

6. Reset the conferenceId of the split call to null.

In CDMA, only 3-way calling is supported. This is an IS-41 CN limitation (see
Network Interworking between GSM-MAP and TIA-41, 3GPP2 document, p.
1-50 provides a comparison of multiparty call and 3-way call.

I.14.4. Event handlers

To handle changes in telephony state, the ConferenceCall interface implements
the following event handlers. The event type for the events is Event.

event handler event name/telephony state

onparticipantadded participantadded

onparticipantremoved participantremoved

onjoining joining

onactive active

onsplitting splitting

onholding holding

onheld held

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 204 of 298

http://www.scribd.com/doc/7029977/Network-Inter-Working-Between-GSM-MAP-and-ANSI41-CDMA

onresuming resuming

ondisconnecting disconnecting

ondisconnected disconnected

I.15. SECURITY AND PRIVACY CONSIDERATIONS

To be improved. See bug 26.

This API provides access to a potentially dangerous and valuable feature of a
device. As a result, misuse of the API would have a large cost to users and other
system stakeholders. This API should, therefore, not be implemented without
careful consideration of security and privacy issues.

This section provides a limited overview of security and privacy considerations
relevant for this API. It includes a set of threats to users and other
stakeholders, as well as requirements for mitigating them.

However, this section cannot cover all of the potential threats, nor can it reflect
the context in which a conformant implementation may be operating. As a
result, this security section should be considered only the starting point for
implementers.

I.15.1. Threats

The following list of threats should be considered by the implementer. Note
that these are not given in any order.

• The API could be used by a malicious application to deny other system
applications access to the device's telephony services, creating an
availability problem. This is a safety, as well as security, concern.

• The API could be used by a malicious application as part of a distributed
denial of service attack, making frequent calls to a remote call system
such as an emergency response number.

• The API could be used by an application to list the telephone numbers
that the end user has called and is, at any time, calling. This information
ought to be considered private, and could also be used as part of a social
engineering attack, or for identity theft.

• The API could be used to make unwanted calls to premium-rate
telephone numbers. A malicious application could use this to earn
money at the user's expense. Similarly, this API could be misused to
enrol the user into a premium-rate calling service, which would then
charge the end user when calls are received.

• The API could be used to make unwanted advertising calls, in a similar
manner to spam email campaigns. When combined with access to the
user's contact list, this would be both expensive and embarassing for the
user, and could result in their telephony service being terminated by the
network operator.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 205 of 298

https://github.com/sysapps/telephony/issues/26

• The API could be used by a malicious application to make telephone calls
impersonating the end user, or as part of a process to defeat a two-factor
authentication system.

• A poorly implemented application could misuse this API to make
unnecessary or unexpected calls, costing the user money or
embarassing them.

• This API could be used to call a number other than the one that the
user was expecting, routing calls to an unknown man-in-the-middle. This
could be used to eavesdrop on the user. When used in combination
with recordings from the microphone, this API could be used to covertly
survey the end user.

• This API could be used to send USSD messages to the service provider
and invoke functions such as wiping the handset or accessing security
settings.

• The API could be misused to access the user's voicemail recordings.
• The API could be misused as part of a DDoS attack on an operator or

service provider, flooding the network with calls at certain times.
• The API could cost the end user money by making outgoing calls when

the user is roaming, or on an expensive network.

I.15.2. Mitigations

The following mechanisms may be employed to help an implementer mitigate
the threats outlined in the previous section.

• The user agent should only expose this API to privileged applications, as
defined in the Runtime and Security Model.

• The user agent should only expose this API to applications which were
distributed by an institution that the handset recognises as a valid
source. For example, the API might only be accessible to applications
distributed by the handset manufacturer.

• All applications with access to this API should be reviewed before they
are made available. A mechanism for remote update of applications with
access to this API should be provided to allow for identified security
issues to be fixed.

• The user agent should maintain the integrity of any application with
access to this API when initially downloaded, as well as when it is stored
offline.

• The user agent should only expose this API to downloaded, offline
applications which are not modifiable by external web servers. A
restrictive content security policy should be used to enforce that
application with external content (such as scripts) cannot access this
API.

• The API implementation should have different behaviour when used with
premium-rate numbers. Accessing premium-rate numbers may require
an additional permission to be listed in the manifest, a different (or
additional) warning to be displayed to users, or place an additional
requirement on the valid distributors of the application. It is up to the

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 206 of 298

http://www.w3.org/TR/runtime/

implementing user agent to identify whether a remote party identifier is
premium-rate or not.

• The API implementation should have different behaviour when the user
is roaming on a network with a different (less favourable) service-level
agreement. For example, presenting a different warning to the user, or
denying access to this API from certain applications altogether.

• User consent must be captured when a call is made. For example, the
user must press a 'dial' button, or equivalent, before the call is placed.
The user must also be shown the recipients of the call, and the numbers
that have and will be dialled as part of placing it.

• It should be obvious, visually, when a call is being invoked, is in
progress, and has ended. This should be visible to the end user and it
must not be possible for applications to hide or obscure this indicator.

• The user agent should introduce rate limiting to prevent an application
from making too many calls in too short a period of time.

I.15.3. User interaction guidelines

TODO

I.16. MANAGING CALL HISTORY

The CallHistoryEntry interface describes the minimum set of properties which
a user agent would need to support for call history entries. For multiparty call
there needs to be a separate CallHistoryEntry object for each call participant,
sharing the same value for the conferenceId attribute.

It is up the the implementations and applications how to store and access call
history. This document only specifies the minimum content of the data to be
saved.

I.16.1. CallHistoryEntry interface

readonly attribute DOMString remoteParty
readonly attribute DOMString serviceId
readonly attribute DOMString? conferenceId
readonly attribute Date startTime
readonly attribute unsigned long long duration
readonly attribute CallDirection direction
readonly attribute DisconnectReason? disconnectReason
readonly attribute boolean emergency

I.16.2. The remoteParty attribute

When getting the remoteParty attribute, the user agent MUST return the
remote party id (e.g. telephone number) of the call participant.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 207 of 298

I.16.3. The serviceId attribute

When getting the serviceId attribute, the user agent MUST return the
telephony service id of the telephony service used for the call.

I.16.4. The conferenceId attribute

When getting the conferenceId attribute, the user agent MUST return the
conference id of the call, if the call has participated in a multiparty call.
Otherwise, return null. string.

I.16.5. The startTime attribute

When getting the startTime attribute, the user agent MUST return the starting
time of the call, measured from when the call is in active state.

I.16.6. The duration attribute

When getting the duration attribute, the user agent MUST return the duration
of the call expressed in milliseconds.

I.16.7. The direction attribute

When getting the direction attribute, the user agent MUST return the
CallDirection.

I.16.8. The disconnectReason attribute

When getting the disconnectReason attribute, the user agent MUST return the
DisconnectReason if available, or return null otherwise.

I.16.9. The emergency attribute

When getting the emergency attribute, the user agent MUST return true if the
call was an emergency call, or false otherwise.

I.17. CALLDIRECTION ENUM

dialed
The call has been dialed.

received
The call has been received.

missed
The call has been missed.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 208 of 298

missed-new
The call was a missed call not seen yet by the user.

I.18. CHANGES

The following is a list of substantial changes to the document. For a complete
list of changes, see the change log on Github. You can also view the recently
closed bugs.

• No changes yet.

I.19. ACKNOWLEDGEMENTS

The editors would like to express their gratitude to the Mozilla B2G Team for
their technical guidance, implementation work and support, especially to Ben
Turner and Jonas Sicking, the authors of the B2G WebTelephony API. Also,
thanks to Denis Kenzior (ofono maintainer) and Oleg Zhurakivskyy of Intel
Open Source Technology Center, and many others for their advice and support.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 209 of 298

https://github.com/sysapps/telephony/commits/gh-pages
https://github.com/sysapps/telephony/issues?page=1&state=closed
https://github.com/sysapps/telephony/issues?page=1&state=closed
https://wiki.mozilla.org/WebAPI/WebTelephony
https://ofono.org/

J. TCP AND UDP SOCKET API

W3C Editor's Draft 13 October 2014

This version:
http://www.w3.org/2012/sysapps/telephony/

Latest published version:
http://www.w3.org/TR/telephony/

Latest editor's draft:
http://www.w3.org/2012/sysapps/telephony/

Editors:
Claes Nilsson, Sony Mobile

Copyright © 2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved.
W3C liability, trademark and document use rules apply.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 210 of 298

This API provides interfaces to raw UDP sockets, TCP Client sockets and TCP
Server sockets.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 211 of 298

This specification is based the Streams API, [[!STREAMS]]. Note that the
Streams API is work in progress and any changes made to Streams may impact
the TCP and UDP Socket API specification. However, it is the editor's ambition
to continously update the TCP and UDP API specification to be aligned with the
latest version the Streams API.

This is a note on error handling.

When using promises rejection reasons should always be instances of the
ECMAScript Error type such as DOMException or the built in ECMAScript
error types. See Promise rejection reasons. In the TCP and UDP Socket API the
error names defined in WebIDL Exceptions are used. If additional error names
are needed an update to Github WebIDL should be requested though a Pull
Request.

This is a note on data types of TCP and UDP to send and receive.

In the previous version of this API the send() method accepted the following
data types for the data to send: DOMString,Blob, ArrayBuffer or
ArrayBufferView. This was aligned with the send() method for Web Sockets. In
this Streams API based version only ArrayBuffer is accepted as type for data to
send. The reason is that encoding issues in a Streams based API should instead
be handled by a transform stream.

J.1. INTRODUCTION

Use this API to send and receive data over the network using TCP or UDP.

Examples of use cases for this API are:

• An email client which communicates with SMTP, POP3 and IMAP servers
• An irc client which communicates with irc servers
• Implementing an ssh app
• Communicating with existing consumer hardware, like internet

connected TVs
• Game servers
• Peer-to-peer applications
• Local network multicast service discovery, e.g. UPnP/SSDP and mDNS

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 212 of 298

https://github.com/w3ctag/promises-guide#rejection-reasons-should-be-errors
http://heycam.github.io/webidl/#idl-DOMException-error-names
https://github.com/heycam/webidl/

This specification defines conformance criteria that apply to a single product:
the user agent that implements the interfaces that it contains.

Implementations that use ECMAScript to implement the APIs defined in this
specification MUST implement them in a manner consistent with the
ECMAScript Bindings defined in the Web IDL specification [[!WEBIDL]], as this
specification uses that specification and terminology.

J.2. TERMINOLOGY

The Promise interface provides asynchronous access to the result of an
operation that is ongoing, has yet to start, or has completed, as defined in
[[!ES6]].

J.3. SECURITY AND PRIVACY CONSIDERATIONS

This API must be only exposed to trusted content.

There is ongoing work on trust and permissions in W3C. For example see
Workshop on trust and permissions for Web applications 3–4 September 2014,
Paris, France. The assumption is that this API must only be exposed to trusted
content according to a security model based on existing web security
mechanisms such as tls/ssl, signed manifests, csp, etc. The details of that
security model as such is out of scope for this specification as this model should
apply to any security and privacy sensitive API.

J.4. INTERFACE UDPSOCKET

The UDPSocket interface defines attributes and methods for UDP
communication

//
// This example shows a simple implementation of UPnP-SSDP M-SEARCH
// discovery using a multicast UDPSocket
//

var address = '239.255.255.250',
port = '1900',
serviceType = 'upnp:rootdevice',
rn = '\r\n',
search = '';

// Create a new UDP client socket
var mySocket = new UDPSocket();

// Build an SSDP M-SEARCH multicast message
search += 'M-SEARCH * HTTP/1.1' + rn;
search += 'ST: ' + serviceType + rn;
search += 'MAN: "ssdp:discover"' + rn;

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 213 of 298

http://people.mozilla.org/~jorendorff/es6-draft.html#sec-promise-objects
http://www.w3.org/2014/07/permissions/minutes.html
http://www.w3.org/2014/07/permissions/minutes.html

search += 'HOST: ' + address + ':' + port + rn;
search += 'MX: 10';

// Receive and log SSDP M-SEARCH response messages
function receiveMSearchResponses() {

// While data in buffer, read and log UDP message
while (mySocket.readable.state === "readable") {

var msg = mySocket.readable.read();
console.log ('Remote address: ' + msg.remoteAddress +

' Remote port: ' + msg.remotePort +
'Message: ' + ab2str(msg.data));

// ArrayBuffer to string conversion could also be done by piping
// through a transform stream. To be updated when the Streams API
// specification has been stabilized on this point.

}

// Wait for SSDP M-SEARCH responses to arrive
mySocket.readable.wait().then(

receiveMSearchResponses,
e => console.error("Receiving error: ", e);

);
}

// Join SSDP multicast group
mySocket.joinMulticast(address);

// Send SSDP M-SEARCH multicast message
mySocket.writeable.write(

{data : str2ab(search),
remoteAddress : address,
remotePort : port

}).then(
() => {

// Data sent sucessfully, wait for response
console.log('M-SEARCH Sent');
receiveMSearchResponses();

},
e => console.error("Sending error: ", e);

);

// Log result of UDP socket setup.
mySocket.opened.then(

() => {
console.log("UDP socket created sucessfully");

},
e =>console.error("UDP socket setup failed due to error: ", e);

);

// Handle UDP socket closed, either as a result of the application
// calling mySocket.close() or an error causing the socket to be

closed.
mySocket.closed.then(

() => {
console.log("Socket has been cleanly closed");

},
e => console.error("Socket closed due to error: ", e);

);

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 214 of 298

readonly attribute DOMString? localAddress
The IPv4/6 address of the local interface, e.g. wifi or 3G, that the
UDPSocket object is bound to. Can be set by the constructor's options
argument's localAddress member. If this member is not present but the
remoteAddress member is present, the user agent binds the socket to a
local IPv4/6 address based on the routing table and possiby a preselect
default local interface to use for the selected remoteAddress. Else, i.e.
neither the localAddress or the remoteAddress members are present in
the constructor's options argument, the localAddress attribute is set to
null.

readonly attribute unsigned short? localPort
The local port that the UDPSocket object is bound to. Can be set by the
options argument in the constructor. If not set the user agent binds the
socket to an ephemeral local port decided by the system and this attribute
is null.

readonly attribute DOMString? remoteAddress
The default remote host name or IPv4/6 address that is used for subsequent
send() calls. Null if not stated by the options argument of the constructor.

readonly attribute unsigned short? remotePort
The default remote port that is used for subsequent send() calls. Null if not
stated by the options argument of the constructor

readonly attribute boolean addressReuse
true allows the socket to be bound to a local address/port pair that already
is in use. Can be set by the options argument in the constructor. Default is
true.

readonly attribute boolean loopback
Only applicable for multicast.true means that sent multicast data is looped
back to the sender. Can be set by the options argument in the constructor.
Default is false.

readonly attribute SocketReadyState readyState
The state of the UDP Socket object. A UDP Socket object can be in "open"
"opening" or "closed" states. See enum SocketReadyState for details.

readonly attribute Promise opened
Detects the result of the UDP socket creation attempt.Returns the
openedPromise that was created in the UDPSocket constructor.

readonly attribute Promise closed
Detects when the UDP socket has been closed, either cleanly by the client
application calling close()) or through an error situation, e.g. network

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 215 of 298

contact lost. Returns the closedPromise that was created in the UDPSocket
constructor.

readonly attribute ReadableStream readable
The object that represents the UDP socket's source of data, from which you
can read. [[!STREAMS]]

readonly attribute WriteableStream writeable
The object that represents the UDP socket's destination for data, into which
you can write. [[!STREAMS]]

Promise close()

Closes the UDP socket. Returns the closedPromise that was created in the
UDPSocket constructor.

void joinMulticast()

Joins a multicast group identified by the given address.

Note that even if the socket is only sending to a multicast address, it is
a good practice to explicitely join the multicast group (otherwise some
routers may not relay packets).

DOMString multicastGroupAddress
The multicast group address.

void leaveMulticast()

Leaves a multicast group membership identified by the given address.

DOMString multicastGroupAddress
The multicast group address.

When the UDPSocket constructor is invoked, the User Agent MUST run the
following steps:

1. Create a new UDPSocket object ("mySocket").
2. If the options argument's remoteAddress member is present and it

is a valid host name or IPv4/6 address then set the
mySocket.remoteAddress attribute (default remote address) to the
requested address. Else, if the remoteAddress member is present but it
is not a valid host name or IPv4/6 address then throw DOMException
InvalidAccessError and abort the remaining steps. Otherwise, if the
options argument's remoteAddress member is absent then set the
mySocket.remoteAddress attribute (default remote address) to null.

3. If the options argument's remotePort member is present and it is a
valid port number then set the mySocket.remotePort attribute (default
remote port) to the requested port. Else, if the remotePort member is
present but it is not a valid port number then throw DOMException

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 216 of 298

InvalidAccessError and abort the remaining steps. Otherwise, if the
options argument's remotePort member is absent then set the
mySocket.remotePort attribute (default port number) to null.

4. If the options argument's localAddress member is present and the
options argument's remoteAddress member is present, execute the
following step:

◦ If the options argument's localAddress member is a valid IPv4/
6 address for a local interface that can be used to connect to
the selected remoteAddress (according to the routing table) bind
the socket to this local IPv4/6 address and set the
mySocket.localAddress attribute to this addres. Else, if the
localAddress member is present but it is not a valid local IPv4/
6 address for a local interface that can be used to connect to
the selected remoteAddress, throw DOMException
InvalidAccessError and abort the remaining steps.

Else, if the options argument's localAddress member is present and
the options argument's remoteAddress member is absent, execute the
following step:

◦ If the options argument's localAddress member is a valid IPv4/
6 address for a local interface on the device bind the socket
to this local IPv4/6 address and set the mySocket.localAddress
attribute to this addres. Else, if the localAddress member is
present but it is not a valid local IPv4/6 address for a local
interface on the device, throw DOMException
InvalidAccessError and abort the remaining steps. Note that
binding the UDPSocket to a certain local interface means that
the socket can only be used to send UDP datagrams to peers
reachable through this local interface.

Else, if the options argument's localAddress member is absent, and
the options argument's remoteAddress member is present, execute the
following steps:

1. Use the routing table to determine the local interface(s) that can
be used to send datagrams to the selected remoteAddress. If no
local interface can be used to send datagrams to the selected
remoteAddress, throw DOMException InvalidAccessError and
abort the remaining steps.

2. If the routing table states that more than one local interface can
be used to send datagrams to the selected remoteAddress bind
the socket to the IPv4/6 address of the "default" local interface to
use for the selected remoteAddress. The selection of a "default"
local interface is out of scope for this specification.

3. Set the mySocket.localAddress attribute to the local address
that the socket is bound to.

Else, i.e. the options argument's localAddress member is absent, and
the options argument's remoteAddress member is absent, execute the
following step:

◦ Set the mySocket.localAddress attribute to null.
5. If the options argument's localPort member is absent then bind the

socket to an ephemeral local port decided by the system and set the

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 217 of 298

mySocket.localPort attribute to null. Otherwise, bind the socket to the
requested local port and set the mySocket.localPort attribute to the
local port that the socket is bound to.

6. Set the mySocket.addressReuse attribute to the value of the options
argument's addressReuse member if it is present or to true if the
options argument's addressReuse member is not present.

7. If the options argument's loopback member is present then set the
mySocket.loopback attribute to the value of this field. Else set this
attribute to false.

8. Set the mySocket.readyState attribute to "opening".
9. Create a new promise, "openedPromise", and store it so it can later be

returned by the opened property.
10. Create a new promise, "closedPromise", and store it so it can later be

returned by the closed property and the close method.
11. Let the mySocket.readable attribute be a new ReadableStream object,

[[!STREAMS]]. The User Agent MUST implement the adaptation layer
to [[!STREAMS]] for this new ReadableStream object through
implementation of a number of functions that are given as input
arguments to the constructor and called by the [[!STREAMS]]
implementation. The semantics for these functions are described below:

◦ The constructor's start() function is called immediately by the
[[!STREAMS]] implementation. The start() function MUST run
the following steps:

1. Setup the UDP socket to the bound local and remote
address/port pairs in the background (without blocking
scripts) and return openedPromise.

2. When the UDP socket has been successfully setup the
following steps MUST run:

1. Change the mySocket.readyState attribute's value
to "open".

2. Resolve openedPromise with undefined.
The following internal methods of the ReadableStream are
arguments of the constructor's start() function and MUST be
called by the start() function implementation according to the
following steps:

▪ The enqueue() argument of start() is a function that
pushes received data into the internal buffer.
When a new UDP datagram has been received the
following steps MUST run:

1. Create a new instance of UDPMessage.
2. Set the UDPMessage object's data member to a new

read-only ArrayBuffer object whose contents are
the received UDP datagram [[!TYPED-ARRAYS]].

3. Set the remoteAddress member of the UDPMessage
object to the source address of the received UDP
datagram.

4. Set the remotePort member of the UDPMessage
object to the source port of the received UDP
datagram.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 218 of 298

5. Call enqueue() to push the UDPMessage object into
the internal [[!STREAMS]] receive buffer. Note that
enqueue() returns false if the high watermark of
the buffer is reached. However, as there is no flow
control mechanism in UDP the flow of datagrams
can't be stopped. The enqueue() return value should
therefore be ignored. This means that datagrams
will be lost if the internal receive buffer has been
filled to it's memory limit but this is the nature of an
unreliable protocol as UDP.

▪ The error() argument of start() is a function that
handles readable stream errors and closes the readble
stream.
Upon detection that the attempt to setup a new UDP socket
(mySocket.readyState is "opening") has failed, e.g.
because the local address/port pair is already in use and
mySocket.addressReuse is false, the following steps
MUST run:

1. Call error() with DOMException "NetworkError".
2. Reject openedPromise with DOMException

"NetworkError".
3. Reject closedPromise with DOMException

"NetworkError".
4. Change the mySocket.readyState attribute's value

to "closed" and release any underlying resources
associated with this socket.

Upon detection that there is an error with the established
UDP socket (mySocket.readyState is "open"), e.g. network
connection is lost, the following steps MUST run:

1. Call error() with DOMException "NetworkError".
2. Reject closedPromise with DOMException

"NetworkError".
3. Change the mySocket.readyState attribute's value

to "closed" and release any underlying resources
associated with this socket.

When a new UDP datagram has been received and upon
detction that it is not possible to convert the received UDP
data to ArrayBuffer, [[!TYPED-ARRAYS]], the following
steps MUST run:

1. Call error() with TypeError.
2. Reject closedPromise with TypeError.
3. Change the mySocket.readyState attribute's value

to "closed" and release any underlying resources
associated with this socket.

◦ The constructor's pull() function MUST be omitted as there is no
flow control mechanism in UDP and the flow of datagrams cannot
be stopped and started again.

◦ The constructor's cancel() function input argument is called
by the [[!STREAMS]] implementation when the ReadbleStream

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 219 of 298

should be canceled. For UDP this means that the UDP socket
should be closed for reading and writing. The cancel() function
MUST run the following steps:

1. If mySocket.readyState is "closed" then do nothing and
abort the remaning steps.

2. If mySocket.readyState is "opening" then fail the UDP
socket setup process, reject openedPromise with
DOMException AbortError and set the
mySocket.readyState attribute to "closed".

3. If mySocket.readyState is "open" the the following steps
MUST run:

1. Call mySocket.writeable.close() to assure that
any buffered send data is sent.

2. Set the mySocket.readyState attribute's value to
"closed".

3. Resolve closedPromise with undefined and release
any underlying resources associated with this
socket.

If the constructor's strategy argument is omitted the Default
strategy for Readable Streams applies. Currently this means that
the ReadableStream object goes to "readable" state after 1 chunk
has been enqueued to the internal ReadableStream object's input
buffer. An application should call .wait() to be notified when the
state changes to "readable". To be further investigated which
ReadableStreamStrategy that should be applied to UDP.

12. Let the mySocket.writeable attribute be a new WritableStream object,
[[!STREAMS]]. The User Agent MUST implement the adaptation layer
to [[!STREAMS]] for this new WritableStream object through
implementation of a number of functions that are given as input
arguments to the constructor and called by the [[!STREAMS]]
implementation. The semantics for these functions are described below:

◦ The constructor's start() function MUST run the following
steps:

1. Create a new promise, "writableStartPromise".
2. If the attempt to create a new UDP socket (see the

description of the semantics for the mySocket.readable
attribute constructor's start() function) succeded resolve
writableStartPromise with undefined, else reject
writableStartPromise with DOMException
"NetworkError".

◦ The constructor's write(chunk) function is called by the
[[!STREAMS]] implementation to write UDP data. The write()
function MUST run the following steps:

1. Create a new promise, "writePromise"
2. Let the chunk argument be the result of converting data to

an UDPMessage (per [[!WEBIDL]] dictionary conversion).

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 220 of 298

https://streams.spec.whatwg.org/#default-rs-strategy
https://streams.spec.whatwg.org/#default-rs-strategy

3. If no default remote address was specified in the
UDPSocket's constructor options argument's
remoteAddress member and the UDPMesssage object's
remoteAddress member is not present or null then throw
DOMException InvalidAccessError and abort these
steps.

4. If no default remote port was specified in the UDPSocket's
constructor options argument's remotePort member and
the UDPMesssage object's remotePort member is not
present or null then throw DOMException
InvalidAccessError and abort these steps.

5. Send UDP data with data passed in the data member of
the UDPMessage object. The destination address is the
address defined by the UDPMesssage object's
remoteAddress member if present, else the destination
address is defined by the UDPSocket's constructor options
argument's remoteAddress member. The destination port
is the port defined by the UDPMesssage object's
remotePort member if present, else the destination port
is defined by the UDPSocket's constructor options
argument's remotePort member.

6. If sending succeed resolve writePromise with undefined,
else reject writePromise with DOMException
"NetworkError".

◦ The constructor's close() and abort() functions MUST be
omitted as it is not possible to just close the writable side of a
UDP socket.

If the constructor's strategy argument is omitted the Default
strategy for Writable Streams applies. Currently this means that
the WriteableStream object goes to "waiting" state after 1 chunk
has been written to the internal WriteableStream object's output
buffer. This means that the application should call .wait() to be
notified of when the state changes to "writable", i.e. the queued
chunk has been written to the remote peer and more data chunks
could be written. To be further investigated which
WritableStreamStrategy that should be applied to UDP.

13. Return the newly created UDPSocket object ("mySocket") to the
application.

The close method when invoked MUST run the following steps:

1. Call mysocket.readable.cancel(reason). (Reason codes TBD.)
2. Return closedPromise.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 221 of 298

https://streams.spec.whatwg.org/#default-ws-strategy
https://streams.spec.whatwg.org/#default-ws-strategy

J.5. INTERFACE TCPSOCKET

The TCPSocket interface defines attributes and methods for TCP
communication

//
// This example shows a simple TCP echo client.
// The client will send "Hello World" to the server on port 6789 and log
// what has been received from the server.
//

// Create a new TCP client socket and connect to remote host
var mySocket = new TCPSocket("127.0.0.1", 6789);

// Send data to server
mySocket.writeable.write("Hello World").then(

() => {

// Data sent sucessfully, wait for response
console.log("Data has been sent to server");
mySocket.readable.wait().then(

() => {

// Data in buffer, read it
console.log("Data received from server:"

+ mySocket.readable.read());

// Close the TCP connection
mySocket.close();

},

e => console.error("Receiving error: ", e);
);

},
e => console.error("Sending error: ", e);

);

// Signal that we won't be writing any more and can
// close the write half of the connection.
mySocket.halfClose();

// Log result of TCP connection attempt.
mySocket.opened.then(

() => {
console.log("TCP connection established sucessfully");

},
e =>console.error("TCP connection setup failed due to error: ", e);

);

// Handle TCP connection closed, either as a result of the application
// calling mySocket.close() or the other side closed the TCP
// connection or an error causing the TCP connection to be closed.
mySocket.closed.then(

() => {
console.log("TCP socket has been cleanly closed");

},
e => console.error("TCP socket closed due to error: ", e);

);

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 222 of 298

readonly attribute DOMString remoteAddress
The host name or IPv4/6 address of the peer as stated by the
remoteAddress argument in the constructor.

readonly attribute unsigned short remotePort
The port of the peer as stated by the remotePort argument in the
constructor.

readonly attribute DOMString localAddress
The IPv4/6 address of the local interface, e.g. wifi or 3G, that the
TCPSocket object is bound to. Can be set by the options argument in the
constructor. If not set the user agent binds the socket to an IPv4/6 address
based on the routing table and possibly a preselect default local interface
to use for the selected remoteAddress.

readonly attribute unsigned short localPort
The local port that the TCPSocket object is bound to. Can be set by the
options argument in the constructor. If not set the user agent binds the
socket to an ephemeral local port decided by the system.

readonly attribute boolean addressReuse
true allows the socket to be bound to a local address/port pair that already
is in use. Can be set by the options argument in the constructor. Default is
true.

readonly attribute boolean noDelay
true if the Nagle algorithm for send coalescing, [[!NAGLE]], is disabled.
Can be set by the options argument in the constructor. Default is true.

readonly attribute SocketReadyState readyState
The state of the TCP Socket object. See enum SocketReadyState for details.

readonly attribute Promise opened
Detects the result of the TCP connection attempt with the remote peer.
Returns the openedPromise that was created in the TCPSocket constructor.

readonly attribute Promise closed
Detects when the TCP connection has been closed, either cleanly (initiated
either by the server, or by the client application calling close()) or through
an error situation. Returns the closedPromise that was created in the
TCPSocket constructor.

readonly attribute ReadableStream readable
The object that represents the TCP socket's source of data, from which you
can read. [[!STREAMS]]

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 223 of 298

readonly attribute WriteableStream writeable
The object that represents the TCP socket's destination for data, into which
you can write. [[!STREAMS]]

Promise close()

Closes the TCP socket. Returns the closedPromise that was created in the
TCPSocket constructor.

void halfClose()

Half closes the TCP socket.

When the TCPSocket constructor is invoked, the User Agent MUST run the
following steps:

1. Create a new TCPSocket object ("mySocket").
2. If the remoteAddress argument is not a valid host name or IPv4/6

address and/or the remotePort argument is not a valid port number then
throw DOMException "InvalidAccessError" and abort the remaining
steps, else set the mySocket.remoteAddress and mySocket.remotePort
attributes to the requested values.

3. If the options argument's localAddress member is present and it is a
valid IPv4/6 address for a local interface that can be used to connect
to the selected remoteAddress (according to the routing table) bind the
socket to this local IPv4/6 address and set the mySocket.localAddress
attribute to this addres. Else, if the localAddress member is present but
it is not a valid local IPv4/6 address for a local interface that can be used
to connect to the selected remoteAddress then throw DOMException
"InvalidAccessError" and abort the remaining steps.
Otherwise, if the options argument's localAddress member is absent,
execute the following steps:

1. Use the routing table to determine the local interface(s) that can
be used to connect to the selected remoteAddress. If no local
interface can be used to connect to the selected remoteAddress
then throw DOMException "InvalidAccessError" and abort the
remaining steps.

2. If the routing table states that more than one local interface can
be used to connect to the selected remoteAddress bind the socket
to the IPv4/6 address of the "default" local interface to use for
the selected remoteAddress. The selection of a "default" local
interface is out of scope for this specification.

3. Set the mySocket.localAddress attribute to the local address
that the socket is bound to.

4. If the options argument's localPort member is absent then bind the
socket to an ephemeral local port decided by the system and set the
mySocket.localPort attribute to this port. Otherwise, bind the socket
to the requested local port and set the mySocket.localPort attribute to
the local port that the socket is bound to.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 224 of 298

5. Set the mySocket.addressReuse attribute to the value of the options
argument's addressReuse member if it is present or to true if the
options argument's addressReuse member is not present.

6. Set the mySocket.noDelay attribute to the value of the options
argument's noDelay member if it is present or to true if the options
argument's noDelay member is not present.

7. Set the mySocket.readyState attribute to "opening".
8. Create a new promise, "openedPromise", and store it so it can later be

returned by the opened property.
9. Create a new promise, "closedPromise", and store it so it can later be

returned by the closed property and the close method.
10. Let the mySocket.readable attribute be a new ReadableStream object,

[[!STREAMS]]. The User Agent MUST implement the adaptation layer
to [[!STREAMS]] for this new ReadableStream object through
implementation of a number of functions that are given as input
arguments to the constructor and called by the [[!STREAMS]]
implementation. The semantics for these functions are described below:

◦ The constructor's start() function is called immediately by the
[[!STREAMS]] implementation. The start() function MUST run
the following steps:

1. A TCP connection setup handshake to the requested
address and port MUST be performed in the background
(without blocking scripts). Return openedPromise.

2. When the TCP connection has been successfully
established the following steps MUST run:

1. Change the mySocket.readyState attribute's value
to "open".

2. Resolve openedPromise with undefined.
The following functions are arguments of the constructor's
start() function and MUST be called by the start() function
implementation according to the following steps:

▪ The enqueue() argument of start() is a function that
pushes received data into the internal buffer.
When new TCP data is received the following steps MUST
run:

1. Create a new read-only ArrayBuffer object whose
contents are the received TCP data.

2. Call enqueue() to push the ArrayBuffer into the
internal [[!STREAMS]] receive buffer.

3. If the high watermark of the buffer is reached
enqueue() returns false and the TCP flow control
MUST be used to stop the data transmission from
the remote peer.

▪ The close() argument of start() is a function that closes
the readable stream.
Upon detection that the TCP connection has been closed
cleanly (initiated either by the server, or by the client
application calling close()) through a successful TCP

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 225 of 298

connection closing handshake the following steps MUST
run:

1. Call close().
2. Set the mySocket.readyState attribute's value to

"closed" and release any underlying resources
associated with this socket.

3. Resolve closedPromise with undefined.
▪ The error() argument of start() is a function that

handles readable stream errors and closes the readble
stream.
Upon detection that the attempt to create a new TCP
socket and establish a new TCP connection
(mySocket.readyState is "opening") has failed the
following steps MUST run:

1. Call error() with DOMException "NetworkError".
2. Reject openedPromise with DOMException

"NetworkError".
3. Reject closedPromise with DOMException

"NetworkError".
4. Change the mySocket.readyState attribute's value

to "closed" and release any underlying resources
associated with this socket.

Upon detection that the established TCP connection
(mySocket.readyState is "open") has been lost the
following steps MUST run:

1. Call error() with DOMException "NetworkError".
2. Reject closedPromise with DOMException

"NetworkError".
3. Change the mySocket.readyState attribute's value

to "closed" and release any underlying resources
associated with this socket.

Upon detection that the TCP connection closing handshake
failed (mySocket.readyState is "closing") has failed the
following steps MUST run:

1. Call error() with DOMException "NetworkError".
2. Reject closedPromise with DOMException

"NetworkError".
3. Change the mySocket.readyState attribute's value

to "closed" and release any underlying resources
associated with this socket.

When new TCP data has been received and upon detction
that it is not possible to convert the received data to
ArrayBuffer, [[!TYPED-ARRAYS]], the following steps
MUST run:

1. Call error() with TypeError.
2. Reject closedPromise with TypeError.
3. Change the mySocket.readyState attribute's value

to "closed" and release any underlying resources
associated with this socket.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 226 of 298

◦ The constructor's pull() function is called by the [[!STREAMS]]
implementation if the internal buffer has been emptied, but the
stream's consumer still wants more data. The pull() function
MUST run the following steps:

1. The function MUST resume receiving TCP data through the
TCP flow control mechanism.

◦ The constructor's cancel() function input argument is called
by the [[!STREAMS]] implementation when the ReadbleStream
should be canceled. For TCP this means that the TCP connection
should be terminated. The cancel() function MUST run the
following steps:

1. If mySocket.readyState is "closing" or "closed" then do
nothing and abort the remaning steps.

2. If mySocket.readyState is "opening" then fail the
connection attempt, reject openedPromise with
DOMException AbortError and set the
mySocket.readyState attribute to "closing".

3. If mySocket.readyState is "open" then the following steps
MUST run:

1. Call mySocket.writeable.close() to assure that
any buffered send data is sent before closing the
socket.

2. Set the mySocket.readyState attribute's value to
"closing".

3. Initiate TCP closing handshake.

If the constructor's strategy argument is omitted the Default
strategy for Readable Streams applies. Currently this means that
the ReadableStream object goes to "readable" state after 1 chunk
has been enqueued to the internal ReadableStream object's input
buffer. An application should call .wait() to be notified when the
state changes to "readable". To be further investigated which
ReadableStreamStrategy that should be applied to TCP.

11. Let the mySocket.writeable attribute be a new WritableStream object,
[[!STREAMS]]. The User Agent MUST implement the adaptation layer
to [[!STREAMS]] for this new WritableStream object through
implementation of a number of functions that are given as input
arguments to the constructor and called by the [[!STREAMS]]
implementation. The semantics for these functions are described below:

◦ The constructor's start() function MUST run the following
steps:

1. Create a new promise, "writableStartPromise".
2. If the attempt to create a new TCP socket and establish a

new TCP connection (see the description of the semantics
for the mySocket.readable attribute constructor's
start() function) succeded resolve
writableStartPromise with undefined, else reject

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 227 of 298

https://streams.spec.whatwg.org/#default-rs-strategy
https://streams.spec.whatwg.org/#default-rs-strategy

writableStartPromise with DOMException
"NetworkError".

◦ The constructor's write(chunk) function is called by the
[[!STREAMS]] implementation to write data to the remote peer
on the TCP connection. The write() function MUST run the
following steps:

1. Create a new promise, "writePromise"
2. Send TCP data with data passed in the chunk parameter

to the address and port of the recipient as stated by the
TCPSocket object constructor's remoteAddress and
remotePort fields. The data in the chunk parameter can be
of any type.

3. If sending succeed resolve writePromise with undefined,
else reject writePromise with DOMException
"NetworkError".

◦ The constructor's close() function is called by the [[!STREAMS]]
implementation to close the writable side of the connection, that
is a TCP "half close" is performed. The close() function MUST
run the following steps:

1. If mySocket.readyState is "closing" or "closed" then do
nothing.

2. If mySocket.readyState is "opening" then complete the
connection attempt. If succesful send FIN and set the
mySocket.readyState attribute to "halfclosed".

3. If mySocket.readyState is "open" then send FIN and set
the mySocket.readyState attribute to "halfclosed".

Note that the Streams implementation will call close() after all
queued-up writes successfully completed.

◦ The constructor's abort() function is called by the [[!STREAMS]]
implementation to abort the writable side of the connection. This
function MUST run the same steps as close() but note that the
Streams implementation will throw away any pending queued up
chunks.

If the constructor's strategy argument is omitted the Default
strategy for Writable Streams applies. Currently this means that
the WriteableStream object goes to "waiting" state after 1 chunk
has been written to the internal WriteableStream object's output
buffer. This means that the application should call .wait() to be
notified of when the state changes to "writable", i.e. the queued
chunk has been written to the remote peer and more data chunks
could be written. To be further investigated which
WritableStreamStrategy that should be applied to TCP.

12. Return the newly created TCPSocket object ("mySocket") to the
application.

The close() method when invoked MUST run the following steps:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 228 of 298

https://streams.spec.whatwg.org/#default-ws-strategy
https://streams.spec.whatwg.org/#default-ws-strategy

1. Call mysocket.readable.cancel(reason). (Reason codes TBD.)
2. Return closedPromise.

The halfClose() method when invoked MUST run the following steps:

1. Call mysocket.writeable.close().

J.6. INTERFACE TCPSERVERSOCKET

The TCPServerSocket interface supports TCP server sockets that listens to
connection attempts from TCP clients

//
// This example shows a simple TCP echo server.
// The server will listen on port 6789 and respond back with whatever
// has been sent to the server.
//
// Create a new server socket that listens on port 6789
var myServerSocket = new TCPServerSocket({"localPort": 6789});

// Listen for connection attempts from TCP clients.
listenForConnections();
function listenForConnections() {

myServerSocket.listen().then(
connectedSocket => {
// A connection has been accepted

console.log ("Connection accepted from address: " +
connectedSocket.remoteAddress + " port: " +
connectedSocket.remotePort);

// Wait for data
waitForData ();
function waitForData () {

connectedSocket.readable.wait().then(
() => {

// Data in buffer, read it
var receivedData = connectedSocket.readable.read();
console.log ("Received: " + receivedData);

// Send data back
connected.writeable.write(receivedData).then(

() => {
console.log ("Sending data succeeded");

},
e => console.error("Failed to send: ", e);

},
// Continue to wait for data
waitForData ();

},
e => {

console.error("Error in connection: ", e);
// Continue to wait for data
waitForData ();

}
);

}

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 229 of 298

// Continue to listen for new connections
listenForConnections();

},
e => {

console.error("A client connection attempt failed: ", e);

// Continue to listen for new connections
listenForConnections();

}

);
}

// Log result of TCP server socket creation attempt.
myServerSocket.opened.then(

() => {
console.log("TCP server socket created sucessfully");

},
e =>console.error("TCP server socket creation failed due to error: ", e);

);

// Handle TCP server closed, either as a result of the application
// calling myServerSocket.close() or due to an error.
myServerSocket.closed.then(

() => {
console.log("TCP server socket has been cleanly closed");

},
e => console.error("TCP server socket closed due to error: ", e);

);

readonly attribute DOMString localAddress
The IPv4/6 address of the interface, e.g. wifi or 3G, that the TCPServer
Socket object is bound to. Can be set by the options argument in the
constructor. If not set the the server will accept connections directed to any
IPv4 address and this atribute is set to null.

readonly attribute unsigned short localPort
The local port that the TCPServerSocket object is bound to. Can be set by
the options argument in the constructor. If not set the user agent binds
the socket to an ephemeral local port decided by the system and sets this
atribute to null.

readonly attribute boolean addressReuse
true allows the socket to be bound to a local address/port pair that already
is in use. Can be set by the options argument in the constructor. Default is
true.

readonly attribute SocketReadyState readyState
The state of the TCP server object. A TCP server socket object can be
in "open", "opening" or "closed" states. See enum SocketReadyState for
details.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 230 of 298

readonly attribute Promise opened
Detects the result of the TCP server socket opening process when the
socket is ready to receive connection attempts from clients. Returns the
openedPromise that was created in the TCPServerSocket constructor.

readonly attribute Promise closed
Detects when the TCP server socket been closed, either cleanly by the
client application calling close()) or through an error situation. Returns
the closedPromise that was created in the TCPSocket constructor.

Promise listen()

Listens for incoming connection attempts on the specified port and
address. Returns the connectionPromise, which is for a succeful
connection resolved with the TCPSocket object for the accepted TCP
connection and rejected with DOMException "NetworkError" if there is an
error on an incoming connection attempt.

Promise close()

Closes the TCP server socket. If listen() has been called the listening
for incoming connections is stopped but existing TCP connections are
kept open. Returns the closedPromise that was created in the
TCPServerSocket constructor.

When the TCPServerSocket constructor is invoked, the User Agent MUST run
the following steps:

1. Create a new TCPServerSocket object ("myServerSocket").
2. If the options argument's localAddress member is absent the server

will accept connections directed to any IPv4 address and the
localAddress attribute is set to null. Otherwise, if the requested local
address is a valid IPv4/6 address for a local interface on the device bind
the server socket to this local IPv4/6 address and set the localAddress
attribute to this address. Else, if the localAddress member is present
but it is not a valid local IPv4/6 address for a local interface on the
device, throw DOMException InvalidAccessError and abort the
remaining steps.

3. If the options argument's localPort member is absent then bind the
socket to an ephemeral local port decided by the system and set the
localPort attribute to null. Otherwise, bind the socket to the
requested local port and set the localPort attribute to the local port
that the socket is bound to.

4. Set the addressReuse attribute to the value of the options argument's
addressReuse member if it is present or to true if the options
argument's addressReuse member is not present.

5. Set the myServerSocket.readyState attribute to "opening".
6. Create a new promise, "openedPromise", and store it so it can later be

returned by the opened property.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 231 of 298

7. Create a new promise, "closedPromise", and store it so it can later be
returned by the closed property and the close method.

8. Return the newly created TCPServerSocket object to the application.

The close method when invoked MUST run the following steps:

1. If a TCP connection setup is in progress the connection setup is finalized
according to the descriptions below.

2. Stop listening to further connection attempts from clients.
3. Set the myServerSocket.readyState attribute to "closed".
4. Resolve closedPromise with undefined.

The listen method when invoked MUST run the following steps:

1. If myServerSocket.readyState attribute is"closed" then throw
DOMException "InvalidStateError" and abort the remaining steps.

2. Create a new promise, "connectionPromise".
3. Start listening for connections on the specified local port and address.

Return connectionPromise.

When a new TCP server socket has successfully been created the user agent
MUST run the following steps:

1. Change the myServerSocket.readyState attribute's value to "open".
2. Resolve openedPromise with undefined.

When the attempt to create a new TCP server socket
(myServerSocket.readyState is "opening") has failed the user agent MUST
run the following steps:

1. Change the myServerSocket.readyState attribute's value to "closed".
2. Reject openedPromise with DOMException "NetworkError".

When there is an error on an established TCP server socket
(myServerSocket.readyState is "open"), e.g. loss of network contact, the user
agent MUST run the following steps:

1. Change the myServerSocket.readyState attribute's value to "closed".
2. Reject closedPromise with DOMException "NetworkError".

Upon a new successful connection to the TCP server socket the user agent
MUST run the following steps:

1. Let socket be a new instance of TCPSocket.
2. Set the remoteAddress attribute of socket to the IPv4/6 address of the

peer.
3. Set the remotePort attribute of socket to the source port of the of the

peer.
4. Set the localAddress attribute of socket to the used local IPv4/6

address.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 232 of 298

5. Set the localPort attribute of socket to the used local source port.
6. Set the readyState attribute of socket to "open".
7. Set the bufferedAmount attribute of socket to 0.
8. Resolve connectionPromise with socket as argument.

Upon a new connection attempt to the TCP server socket that can not be
served, e.g. due to max number of open connections, the user agent MUST run
the following steps:

1. Reject connectionPromise with DOMException "NetworkError".

J.7. DICTIONARY UDPMESSAGE

The UDPMessage dictionary represents UDP data including address and port
of the remote peer. The field data is mandatory but remoteAddress and
remotePort are optional.

ArrayBuffer data
Received UDP data or UDP data to send.

DOMString remoteAddress
The address of the remote machine.

unsigned short remotePort
The port of the remote machine.

J.8. DICTIONARY UDPOPTIONS

States the options for the UDPSocket. An instance of this dictionary can
optionally be used in the constructor of the UDPSocket object, where all fields
are optional.

DOMString localAddress
The IPv4/6 address of the local interface, e.g. wifi or 3G, that the
UDPSocket object is bound to. If the field is omitted, the user agent binds
the socket to an IPv4/6 address based on the routing table and possibly a
preselect default local interface to use for the selected remoteAddress if
this member is present. Else the UDPSocket is unbound to a local interface.

unsigned short localPort
The local port that the UDPSocket object is bound to. If the the field is
omitted, the user agent binds the socket to a an ephemeral local port
decided by the system.

DOMString remoteAddress
When present the default remote host name or IPv4/6 address that is used
for subsequent send() calls.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 233 of 298

unsigned short remotePort
When present the default remote port that is used for subsequent send()
calls.

boolean addressReuse
true allows the socket to be bound to a local address/port pair that already
is in use. Default is true.

boolean loopback
Only applicable for multicast.true means that sent multicast data is looped
back to the sender. Default is false.

J.9. DICTIONARY TCPOPTIONS

States the options for the TCPSocket. An instance of this dictionary can
optionally be used in the constructor of the TCPSocket object, where all fields
are optional.

DOMString localAddress
The IPv4/6 address of the local interface, e.g. wifi or 3G, that the
TCPSocket object is bound to. If the field is omitted, the user agent binds
the socket to an IPv4/6 address based on the routing table and possibly a
preselect default local interface to use for the selected remoteAddress.

unsigned short localPort
The local port that the TCPSocket object is bound to. If the the field is
omitted, the user agent binds the socket to an ephemeral local port decided
by the system.

boolean addressReuse
true allows the socket to be bound to a local address/port pair that already
is in use. Default is true.

boolean noDelay
true if the Nagle algorithm for send coalescing, [[!NAGLE]], is disabled.
Default is true.

boolean useSecureTransport
true if socket uses SSL or TLS. Default is false.

Use of secure transport needs more investigation

J.10. DICTIONARY TCPSERVEROPTIONS

States the options for the TCPServerSocket. An instance of this dictionary can
optionally be used in the constructor of the TCPServerSocket object, where all
fields are optional.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 234 of 298

DOMString localAddress
The IPv4/6 address of the interface, e.g. wifi or 3G, that the
TCPServerSocket object is bound to. If the field is omitted, the user agent
binds the server socket to the IPv4/6 address of the default local interface.

unsigned short localPort
The local port that the TCPServerSocket object is bound to. If the the field
is omitted, the user agent binds the socket to an ephemeral local port
decided by the system.

boolean addressReuse
true allows the socket to be bound to a local address/port pair that already
is in use. Default is true.

boolean useSecureTransport
true if socket uses SSL or TLS. Default is false.

Use of secure transport needs more investigation

J.11. ENUMS

J.11.1. SocketReadyState

opening
The socket is in opening state, i.e. availability of local address/port is being
checked, network status is being checked, etc. For TCP a connection with
a remote peer has not yet been established.

open
The socket is ready to use to send and received data. For TCP a connection
with a remote peer has been established.

closing
Only used for TCP sockets. The TCP connection is going through the
closing handshake, or the close() method has been invoked.

closed
The socket is closed and can not be use to send and received data. For TCP
the connection has been closed or could not be opened.

halfclosed
Only used for TCP sockets. The TCP connection has been "halfclosed" by
the application, which means that it is not possible to send data but it is
still possible to receive.

J.12. ACKNOWLEDGEMENTS

Many thanks to Domenic Denicola, Marcos Caceres, Jonas Sicking, Ke-Fong
Lin and Alexandre Morgaut for reviewing the specification and providing very

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 235 of 298

valuable feedback. Also thanks to Sony colleagues Anders Edenbrandt, Anders
Isberg and Björn Isaksson for sharing their experience on socket APIs and
providing support.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 236 of 298

K. WEB BLUETOOTH

W3C Community Group Editor's Draft 09 October 2014

Latest editor's draft:
http://webbluetoothcg.github.io/web-bluetooth/

Editors:
See contributors on GitHub

Copyright © 2014 the Contributors to the Web Bluetooth Specification,
published by the Web Bluetooth Community Group under the W3C Community
Contributor License Agreement (CLA).

This document describes an API to discover and communicate with devices
over the Bluetooth 4 wireless standard using the Generic Attribute Profile
(GATT).

Changes to this document may be tracked at https://github.com/
WebBluetoothCG/web-bluetooth/commits/gh-pages.

K.1. INTRODUCTION

Bluetooth is a standard for short-range wireless communication between
devices. Bluetooth "Classic" (BR/EDR) defines a set of binary protocols and
supports speeds up to about 24Mbps. Bluetooth 4.0 introduced a new "Low
Energy" mode known as "Smart", BTLE, or just LE which is limited to about
1Mbps but allows devices to leave their transmitters off most of the time.
BTLE provides most of its functionality through key/value pairs provided by the
Generic Attribute Profile (GATT).

BTLE defines multiple roles that devices can play. The Broadcaster and
Observer roles are for transmitter- and receiver-only applications, respectively.
The Peripheral role is able to receive a single connection. The Central role
supports multiple connections, and is responsible for creating any connections
to Peripheral devices.

GATT further defines Client and Server roles, which are orthogonal to the
Peripheral and Central BTLE roles. GATT allows Servers to expose Services,
whose type is identified by a UUID ([[!RFC4122]]). A Service exposes a
collection of included Services and Characteristics. Each Characteristic has
a type named by a UUID and exposes a value as an array of bytes, some
properties to describe how the value can be used, and a collection of
Descriptors. Each Descriptor has a type named by a UUID and contains related
information about the Characteristic Value.

Despite being designed to support BTLE transport, the GATT protocol can also
run over BR/EDR transport. Both support advertising GATT services without

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 237 of 298

https://github.com/WebBluetoothCG/web-bluetooth/graphs/contributors
https://github.com/WebBluetoothCG/web-bluetooth/commits/gh-pages
https://github.com/WebBluetoothCG/web-bluetooth/commits/gh-pages
https://developer.bluetooth.org/

a connection: BTLE through advertising packets, and BR/EDR through the
extended inquiry response.

The first version of this specification focuses on the Bluetooth 4 GATT protocol
in the Central and Client roles, over either a BR/EDR or LE connection. While
this specification cites the [[BLUETOOTH41]] specification, it intends to also
support communication with devices that only implement Bluetooth 4.0.

K.2. SECURITY AND PRIVACY CONSIDERATIONS

K.3. DEVICE ACCESS IS POWERFUL

When a website requests access to devices using requestDevice, it gets the
ability to access all GATT services mentioned in the call. The UA MUST inform
the user what capabilities these services give the website before asking which
devices to entrust to it. If any services in the list aren't known to the UA, the UA
MUST assume they give the site complete control over the device and inform
the user of this risk. The UA MUST also allow the user to inspect what sites
have access to what devices and revoke these pairings.

The UA MUST NOT allow the user to pair entire classes of devices with a
website. It is possible to construct a class of devices for which each individual
device sends the same Bluetooth-level identifying information. UAs are not
required to attempt to detect this sort of forgery and MAY let a user pair this
pseudo-device with a website.

To help ensure that only the entity the user approved for access actually has
access, this specification requires that only authenticated environments can
access Bluetooth devices (requestDevice).

K.4. ATTACKS ON DEVICES

We expect that many devices are vulnerable to unexpected data delivered to
their radio. In the past, these devices had to be exploited one-by-one, but this
API makes it plausible to conduct large-scale attacks. This specification takes
several approaches to make such attacks more difficult:

• Pairing individual devices instead of device classes requires at least a
user action before a device can be exploited.

• Constraining access to GATT, as opposed to generic byte-stream access,
denies malicious websites access to most parsers on the device.

On the other hand, GATT's Characteristic and Descriptor values are still
byte arrays, which may be set to lengths and formats the device doesn't
expect. UAs are encouraged to validate these values when they can.

• This API never exposes Bluetooth addressing, data signing or encryption
keys ([[!BLUETOOTH41]] Volume 3 Part H Section 2.4.1) to websites.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 238 of 298

https://w3c.github.io/webappsec/specs/mixedcontent/#authenticated-environment

This makes it more difficult for a website to predict the bits that will
be sent over the radio, which blocks packet-in-packet injection attacks.
Unfortunately, this only works over encrypted links, which not all BTLE
devices are required to support.

UAs can also take further steps to protect their users:

• A web service may collect lists of malicious websites and vulnerable
devices. UAs can deny malicious websites access to any device and any
website access to vulnerable devices.

K.5. BLUETOOTH DEVICE IDENTIFIERS

Each Bluetooth BR/EDR device has a unique 48-bit MAC address known as
the BD_ADDR ([[!BLUETOOTH41]] 3.C.15). Each Bluetooth LE device has at
least one of a Public Device Address and a Static Random Address. The Public
Device Address is a MAC address ([[!BLUETOOTH41]] 6.B.1.3). The Static
Random Address may be regenerated on each restart ([[!BLUETOOTH41]]
3.C.10.8). A BR/EDR/LE device will use the same value for the BD_ADDR and
the Public Device Address ([[!BLUETOOTH41]] 2.E.7.4.6).

An LE device may also have a unique, 128-bit Identity Resolving Key (IRK)
([[!BLUETOOTH41]] 3.H.2.4.2.1), which is sent to trusted devices during the
bonding process. To avoid leaking a persistent identifier, an LE device may
scan and advertise using a random Resolvable Private Address or Non-
Resolvable Private Address instead of its Static or Public Address. These
are regenerated periodically (approximately every 15 minutes), but a bonded
device can check whether one of its stored IRKs matches any given Resolvable
Private Address ([[!BLUETOOTH41]] 3.C.10.8.2.3).

Each Bluetooth device also has a human-readable Device Name
(([[!BLUETOOTH41]] 3.C.3.2.2). These aren't guaranteed to be unique, but
may well be, depending on the device type.

K.6. IDENTIFIERS FOR REMOTE BLUETOOTH DEVICES

If a website can retrieve any of the persistent device IDs, these can be used,
in combination with a large effort to catalog ambient devices, to discover a
user's location. A device ID can also be used to identify that a user who pairs
two different websites with the same Bluetooth device is a single user. On the
other hand, many GATT services are available that could be used to fingerprint
a device, and a device can easily expose a custom GATT service to make this
easier.

Because it would be so easy to work around an attempt to block device
identification, this spec doesn't try to do so.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 239 of 298

https://www.usenix.org/legacy/events/woot11/tech/final_files/Goodspeed.pdf

K.7. THE UA'S BLUETOOTH ADDRESS

In BR/EDR mode, or in LE mode during active scanning without the Privacy
Feature, the UA broadcasts its persistent ID to any nearby Bluetooth radio.
This makes it easy to scatter hostile devices in an area and track the UA. As
of 2014-08, few or no platforms document that they implement the Privacy
Feature, so despite this spec recommending it, few UAs are likely to use it. This
spec does require a user gesture for a website to trigger a scan, which reduces
the frequency of scans some, but it would still be better for more platforms to
expose the Privacy Feature.

K.8. DEVICE DISCOVERY

The UA MUST maintain an allowed devices list for each origin, storing a set
of Bluetooth devices the origin is allowed to access. For each device in the
allowed devices list for an origin, the UA MUST maintain an allowed services
list consisting of UUIDs for GATT Primary Services the origin is allowed to
access on the device. The UA MAY remove devices from the allowed devices
list at any time based on signals from the user. For example, if the user chooses
not to remember access, the UA might remove a device when the tab that was
granted access to it is closed. Or the UA might provide a revocation UI that
allows the user to explicitly remove a device even while a tab is actively using
that device. If a device is removed from this list while a Promise is pending to
do something with the device, it MUST be treated the same as if the device
moved out of Bluetooth range.

Promise<BluetoothDevice>
requestDevice(sequence<BluetoothScanFilter> filters, optional
RequestDeviceOptions options)

When this method is invoked, the UA MUST run the following steps:
1. Return a new Promise, but continue running these steps

asynchronously.
2. If the global environment is not an authenticated environment, reject

the Promise with a SecurityError and abort these steps.
3. If the algorithm is not allowed to show a popup, reject the Promise

with a SecurityError and abort these steps.
4. Scan for devices with the union of all services sequences in

filters as the set of Service UUIDs
5. Remove devices from the result of the scan if they do not match a

filter in filters.
6. Display a prompt to the user requesting that the user specify some

devices from the result of the scan. The UA SHOULD show the
user the human-readable name of each device. If this name is not
available because the UA's Bluetooth system doesn't support
privacy-enabled scans, the UA SHOULD allow the user to indicate
interest and then perform a privacy-disabled scan to retrieve the
name.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 240 of 298

http://www.whatwg.org/html/infrastructure.html#javascript-global-environment
https://w3c.github.io/webappsec/specs/mixedcontent/#authenticated-environment
http://www.whatwg.org/specs/web-apps/current-work/multipage/browsers.html#allowed-to-show-a-popup

The UA MAY allow the user to select a nearby device that does not
match filters.

7. Wait for the user to have made their selection.
8. If the user cancels the prompt, reject the Promise with a

NotFoundError and abort these steps.
9. Record the selected device in the origin's allowed devices list and

the union of the service UUIDs from filters and
options.optionalServices in the device and origin's allowed
services list.

10. Connect to the device. ([[BLUETOOTH41]] 3.G.6.2.1) If the
connection fails, reject the Promise with a NetworkError and abort
these steps.

11. Resolve the Promise with a BluetoothDevice instance representing
the selected device.

sequence<BluetoothServiceUuid> services
A list of Service UUIDs that a device must support to match this filter.

sequence<BluetoothServiceUuid> optionalServices = []
A list of Service UUIDs that aren't required for the website to use a device,
but that the website can take advantage of if they're present.

A device matches a filter filter if

• filter.services is not empty and
• the UA has received advertising data, an extended inquiry response, or

a service discovery response indicating that the device supports each
of the Service UUIDs included in filter.services as a primary (vs
included) service.

The list of Service UUIDs that a device advertises might not include all the
UUIDs the device supports. The advertising data does specify whether this
list is complete. If a website filters for a UUID that a nearby device supports
but doesn't advertise, that device might not be included in the list of devices
presented to the user. The UA would need to connect to the device to discover
the full list of supported services, which can impair radio performance and
cause delays, so this spec doesn't require it.

To scan for devices with an optional set of Service UUIDs, defaulting to the set
of all UUIDs, the UA MUST perform the following steps:

1. If the UA has scanned for devices recently TODO: Nail down the amount
of time. with a set of UUIDs that was a superset of the UUIDs for the
current scan, then the UA MAY return the result of that scan and abort
these steps.

2. Let result be a set of Bluetooth devices, initially empty.
3. If the UA supports the LE transport:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 241 of 298

1. The UA MUST perform the General Discovery Procedure
([[BLUETOOTH41]] 3.C.9.2.6). The UA SHOULD enable the
Privacy Feature ([[BLUETOOTH41]] 3.C.10.7).

Both passive scanning ([[!BLUETOOTH41]] 6.B.4.4.3.1) and the
Privacy Feature avoid leaking the unique, immutable device ID.
We ought to require UAs to use either one, but none of the
OS APIs appear to expose either. Bluetooth also makes it hard
to use passive scanning since it doesn't require Central devices
to support the Observation Procedure ([[!BLUETOOTH41]]
3.C.9.1.2).

2. For each discovered LE device ([[BLUETOOTH41]] 3.C.9.2.6), if
the complete device name was not acquired during the General
Discovery Procedure, the UA SHOULD perform the Name
Discovery Procedure ([[BLUETOOTH41]] 3.C.9.2.7).

3. For each discovered LE device, if the advertised Service UUIDs
([[BLUETOOTH-SUPPLEMENT4]], A.1.1) have a non-empty
intersection with the set of Service UUIDs, add the device to
result.

4. For each discovered LE device, the UA MAY connect to the device
and

▪ Use Attribute Caching ([[BLUETOOTH41]] 3.G.2.5.2) and
the Service Changed characteristic ([[BLUETOOTH41]]
3.G.7.1) to recall and validate the supported Service UUIDs
from a previous connection,

▪ Discover Primary Service by Service UUID
([[BLUETOOTH41]] 3.G.4.4.2) for each UUID in the set of
Service UUIDs, or

▪ Discover All Primary Services ([[BLUETOOTH41]]
3.G.4.4.1).

If one of the discovered services is in the set of Service UUIDs,
add the device to result.

Connecting to every nearby device to discover services costs
power and can slow down other use of the Bluetooth radio. UAs
should only discover extra services on a device if they have some
reason to expect that device to be interesting.

UAs should also help developers avoid relying on this extra
discovery behavior. For example, say a developer has previously
connected to a device, so the UA knows the device's full set of
supported services. If this developer then filters using a non-
advertised UUID, the dialog they see may include this device,
even if the filter would likely exclude the device on users'
machines. The UA could provide a developer option to warn when
this happens or to include only advertised services in matching
filters.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 242 of 298

4. If the UA supports the BR/EDR transport:
1. The UA MUST perform the Device Discovery procedure

([[BLUETOOTH41]] 3.C.6.4).

All forms of BR/EDR inquiry/discovery appear to leak the unique,
immutable device address.

2. For each discovered BR/EDR device ([[BLUETOOTH41]]
3.C.6.4.3), if the Service UUIDs ([[BLUETOOTH-
SUPPLEMENT4]], A.1.1) in the Extended Inquiry Response
([[BLUETOOTH41]] 1.A.4.2.1.1.1) have a non-empty intersection
with the set of Service UUIDs, add the device to result.

There is no way to distinguish GATT from non-GATT services in
the Extended Inquiry Response. If a site filters to the UUID of a
non-GATT service, the user may be able to select a device for the
result of requestDevice that this API provides no way to interact
with.

3. For each discovered BR/EDR device, the UA MAY connect to the
device and

▪ Use Attribute Caching and the Service Changed
characteristic to recall and validate the supported Service
UUIDs from a previous connection,

▪ Discover Primary Service by Service UUID for each UUID
in the set of Service UUIDs,

▪ Discover All Primary Services, or
▪ use the Service Discovery Protocol (SDP) to find GATT

Services with UUIDs in the set of Service UUIDs.
([[BLUETOOTH41]] 3.B.2.5)

If one of the discovered services is in the set of Service UUIDs,
add the device to result.

See the note for discovered LE devices.

5. Return result from the scan.

We need a way for a site to register to receive an event when an interesting
device comes within range.

K.9. BLUETOOTHDEVICE

Represents a known Bluetooth device.

readonly attribute DOMString instanceId
Returns the opaque identifier assigned to this device. This identifier MUST
uniquely identify a device to the extent that the UA can determine that
two Bluetooth connections are to the same device. For example, a paired
device MUST keep the same instanceId across a change to its Resolvable

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 243 of 298

Private Address. On the other hand, a device using Non-Resolvable Private
Addresses might not keep the same instanceId. The UA MAY use different
identifiers for the same device on two different origins. The UA MAY create
a new identifier for a known device on an origin if the user revokes and
re-grants access to that device. The UA MAY re-use identifiers for existing
devices on an origin if the user clears the origin's data.

readonly attribute DOMString? name
The human-readable name of the device.

readonly attribute long? deviceClass
The class of the device, a bit-field defined by [[!BLUETOOTH-ASSIGNED-
BASEBAND]].

readonly attribute VendorIdSource? vendorIdSource
The Vendor ID Source field in the pnp_id characteristic in the
device_information service.

readonly attribute long? vendorId
The 16-bit Vendor ID field in the pnp_id characteristic in the
device_information service.

readonly attribute long? productId
The 16-bit Product ID field in the pnp_id characteristic in the
device_information service.

readonly attribute long? productVersion
The 16-bit Product Version field in the pnp_id characteristic in the
device_information service.

readonly attribute boolean? paired
Indicates whether or not the device is paired with the system.

readonly attribute boolean? connected
Indicates whether the device is currently connected to the system.

readonly attribute sequence<UUID>? uuids
UUIDs of protocols, profiles and services advertised by the device. For Low
Energy devices, this list is obtained from AD and GATT primary services.

Promise<void> connect()
Establishes a connection to the device.

Promise<void> disconnect()
Closes the site's connection to the device. Note that this will not always
destroy the physical link itself, since there may be other sites with open
connections.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 244 of 298

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.pnp_id.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.pnp_id.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.pnp_id.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.pnp_id.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

Promise<BluetoothGATTService>
getPrimaryService(BluetoothServiceUuid service)

Returns a promise that is asynchronously resolved with the first primary
GATT service on the remote device whose UUID is service and whose UUID
is in the allowed services list for this device and origin. If there is no such
service, resolves the promise with null.

Promise<sequence<BluetoothGATTService>> getPrimaryServices()
Returns a promise that is asynchronously resolved with a sequence of all
the primary GATT services on the remote device whose UUIDs are in the
allowed services list for this device and origin.

Promise<sequence<BluetoothGATTService>>
getPrimaryServices(BluetoothServiceUuid service)

Returns this.getPrimaryServices([service])

Promise<sequence<BluetoothGATTService>>
getPrimaryServices(sequence<BluetoothServiceUuid> services)

Returns a promise that is asynchronously resolved with a sequence of
all the primary GATT services on the remote device with UUIDs in both
services and the allowed services list for this device and origin.

Allocation authorities for Vendor IDs.

bluetooth

usb

K.10. GATT INTERACTION

K.11. BLUETOOTHGATTSERVICE

BluetoothGATTService represents a GATT Service within a Bluetooth
Peripheral, a collection of characteristics and relationships to other services
that encapsulate the behavior of part of a device.

readonly attribute UUID uuid
The UUID of the service, e.g.
UUID.parse('0000180d-0000-1000-8000-00805f9b34fb').

readonly attribute boolean isPrimary
Indicates whether the type of this service is primary or secondary.

readonly attribute DOMString instanceId
Returns the opaque identifier assigned to this service, which can be used
distinguish between multiple primary services with the same UUID in
a single device or multiple included services with the same UUID in a
single primary service. This identifier MUST be unique among all services
accessible by this website. This identifier MUST continue referring to the
same Service until either an onServiceRemoved event is delivered referring

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 245 of 298

to this BluetoothGATTService or if this service's device is not paired, it is
disconnected.

readonly attribute BluetoothDevice device
The BluetoothDevice representing the remote peripheral that the GATT
service belongs to.

Promise<BluetoothGATTCharacteristic>
getCharacteristic(BluetoothCharacteristicUuid characteristic)

Returns a promise that is asynchronously resolved with the first GATT
characteristic within this Service whose UUID is characteristic.

Promise<sequence<BluetoothGATTCharacteristic>>
getCharacteristics()

Returns a promise that is asynchronously resolved with a sequence of all
the GATT characteristics within this Service.

Promise<sequence<BluetoothGATTCharacteristic>>
getCharacteristics(BluetoothCharacteristicUuid characteristic)

Returns this.getCharacteristics([characteristic])

Promise<sequence<BluetoothGATTCharacteristic>>
getCharacteristics(sequence<BluetoothCharacteristicUuid>
characteristics)

Returns a promise that is asynchronously resolved with a sequence of all
the GATT characteristics within this Service with UUIDs in characteristics.

Promise<BluetoothGATTService>
getIncludedService(BluetoothServiceUuid service)

Returns a promise that is asynchronously resolved with the first GATT
included service (in the order returned by the Find Included Services
procedure: [[BLUETOOTH41]] 3.G.4.5.1) within this Service whose UUID
is service.

Promise<sequence<BluetoothGATTService>> getIncludedServices()
Returns a promise that is asynchronously resolved with a sequence of all
the GATT included services within this Service.

Promise<sequence<BluetoothGATTService>>
getIncludedServices(BluetoothServiceUuid service)

Returns this.getIncludedServices([service])

Bluetooth's procedure for finding included services (3.G.4.5) doesn't
include a way to optimize for a single UUID. Maybe we should omit this and
the next overloads to avoid implying that they're more efficient than the no-
argument version.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 246 of 298

Promise<sequence<BluetoothGATTService>>
getIncludedServices(sequence<BluetoothServiceUuid> services)

Returns a promise that is asynchronously resolved with a sequence of all
the GATT included services within this Service with UUIDs in services.

K.12. BLUETOOTHGATTCHARACTERISTIC

BluetoothGATTCharacteristic represents a GATT Characteristic, which is a
basic data element that provides further information about a peripheral's
service.

readonly attribute UUID uuid
The UUID of the characteristic, e.g.
UUID.parse('00002a37-0000-1000-8000-00805f9b34fb').

readonly attribute BluetoothGATTService service
The GATT service this characteristic belongs to.

readonly attribute CharacteristicProperty[] properties
The properties of this characteristic.

readonly attribute DOMString instanceId
Returns the opaque identifier assigned to this characteristic, which can be
used distinguish between multiple characteristics with the same UUID in
a single service. This identifier MUST be unique among all characteristics
accessible by this website. This identifier MUST continue referring to
the same Characteristic until either an onServiceRemoved or
onServiceChanged event is delivered referring to the
BluetoothGATTService of this characteristic or if this characteristic's
BluetoothDevice is not paired, it is disconnected.

readonly attribute ArrayBuffer? value
The currently cached characteristic value. This value gets updated when
the value of the characteristic is read or updated via a notification or
indication.

Promise<BluetoothGATTDescriptor>
getDescriptor(BluetoothDescriptorUuid descriptor)

Returns a promise that is asynchronously resolved with the first GATT
descriptor within this Characteristic whose UUID is descriptor.

Promise<sequence<BluetoothGATTDescriptor>> getDescriptors()
Returns a promise that is asynchronously resolved with a sequence of all
the GATT descriptors within this Characteristic.

Promise<sequence<BluetoothGATTDescriptor>>
getDescriptors(BluetoothDescriptorUuid descriptor)

Returns this.getDescriptors([descriptor])

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 247 of 298

Promise<sequence<BluetoothGATTDescriptor>>
getDescriptors(sequence<BluetoothDescriptorUuid> descriptors)

Returns a promise that is asynchronously resolved with a sequence of all
the GATT descriptors within this Characteristic with UUIDs in descriptors.

Promise<ArrayBuffer> readValue()
The UA MUST return a new promise and asynchronously read the value of
this characteristic resolving the promise.

Promise<void> writeValue()
Write the value of a specified characteristic from a remote peripheral.
ArrayBuffer value

The value that should be sent to the remote characteristic as part of the
write request.

Promise<void> startNotifications()
The UA MUST return a new Promise and asynchronously enable
notifications on this characteristic resolving the promise. See for details of
receiving notifications.

Promise<void> stopNotifications()
The UA MUST return a new Promise and asynchronously disable
notifications on this characteristic resolving the promise.

To read the value of a BluetoothGATTCharacteristic resolving a promise, the
UA MUST:

1. Let characteristic be the Characteristic that the
BluetoothGATTCharacteristic represents.

2. If the Read bit is not set in characteristic's properties
([[!BLUETOOTH41]] 3.G.3.3.1.1), reject the promise with a
NotSupportedError and abort these steps.

3. Use any combination of the sub-procedures in the Characteristic Value
Read procedure ([[!BLUETOOTH41]] 3.G.4.8) to retrieve the value of
characteristic. Use the Bluetooth error recovery procedure with the
promise. If this fails, abort these steps.

4. Create an ArrayBuffer holding the retrieved value, and assign it to the
BluetoothGATTCharacteristic's value field.

5. Fire an event named characteristicvaluechanged with its bubbles
attribute initialized to true at the BluetoothGATTCharacteristic.

For each known GATT Characteristic, the UA MUST maintain an active
notification context set of BluetoothInteraction objects. This is a single set for
the whole UA, pointing to the navigator.bluetooth object for each separate
script execution environment that has registered for notifications.

To enable notifications on a BluetoothGATTCharacteristic resolving a promise,
the UA MUST:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 248 of 298

https://dom.spec.whatwg.org/#concept-event-fire

1. Let characteristic be the GATT Characteristic that the
BluetoothGATTCharacteristic represents.

2. If neither of the Notify or Indicate bits are set in characteristic's
properties ([[!BLUETOOTH41]] 3.G.3.3.1.1), reject the promise with a
NotSupportedError and abort these steps.

3. If the active notification context set contains navigator.bluetooth,
resolve the promise and abort these steps.

4. Ensure that one of the Notification or Indication bits in
characteristic's Client Characteristic Configuration descriptor
([[!BLUETOOTH41]] 3.G.3.3.3.3) is set, matching the constraints in
characteristic's properties. The UA SHOULD avoid setting both bits, and
MUST deduplicate value-change events if both bits are set. Use the
Bluetooth error recovery procedure with the promise. If this fails, abort
these steps.

5. Add navigator.bluetooth to the active notification context set.
6. Resolve the promise.

After notifications are enabled, the resulting value-change events won't be
delivered until after the current microtask checkpoint. This allows a developer
to set up handlers in the .then handler of the result promise.

To disable notifications on a BluetoothGATTCharacteristic resolving a promise,
the UA MUST:

1. Let characteristic be the GATT Characteristic that the
BluetoothGATTCharacteristic represents.

2. If the active notification context set contains navigator.bluetooth,
remove it.

3. If the active notification context set became empty, the UA SHOULD
clear the Notification and Indication bits in characteristic's Client
Characteristic Configuration descriptor ([[!BLUETOOTH41]]
3.G.3.3.3.3).

4. Queue a task to resolve the promise.

Queuing a task to resolve the promise ensures that no value change events due
to notifications arrive after the promise resolves.

K.13. BLUETOOTHGATTDESCRIPTOR

BluetoothGATTDescriptor represents a GATT Descriptor, which provides
further information about a Characteristic's value.

readonly attribute UUID uuid
The UUID of the characteristic descriptor, e.g.
'00002902-0000-1000-8000-00805f9b34fb'.

readonly attribute BluetoothGATTCharacteristic characteristic
The GATT characteristic this descriptor belongs to.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 249 of 298

https://html.spec.whatwg.org/multipage/webappapis.html#perform-a-microtask-checkpoint
https://html.spec.whatwg.org/multipage/webappapis.html#queue-a-task

readonly attribute DOMString instanceId
Returns the opaque identifier assigned to this descriptor, which can be
used distinguish between multiple descriptors with the same UUID in a
single characteristic. This identifier MUST be unique among all descriptors
accessible by this website. This identifier MUST continue referring to the
same Descriptor until either an onServiceRemoved or onServiceChanged
event is delivered referring to the BluetoothGATTService of this descriptor
or if this descriptor's device is not paired, it is disconnected. Use the
instance ID to distinguish between descriptors from a peripheral with the
same UUID and to make function calls that take in a descriptor identifier.
Present, if this instance represents a remote characteristic.

readonly attribute ArrayBuffer? value
The currently cached descriptor value. This value gets updated when the
value of the descriptor is read.

Promise<ArrayBuffer> readValue()
Retrieve the value of this descriptor from a remote peripheral. Updates the
descriptor's value field to hold the result of the read request and resolves
the promise with the same ArrayBuffer.

Promise<void> writeValue()
Write the value of a specified characteristic descriptor from a remote
peripheral.
ArrayBuffer value

The value that should be sent to the remote descriptor as part of the
write request.

K.14. OBJECT AND UUID LOOKUP ON
NAVIGATOR.BLUETOOTH

readonly attribute BluetoothUuids uuids

Promise<BluetoothGATTService> getService()
Get the GATT service with the given instance ID.
DOMString serviceInstanceId

The instance ID of the requested GATT service.

Promise<BluetoothGATTCharacteristic> getCharacteristic()
Get the GATT characteristic with the given instance ID that belongs to the
given GATT service, if the characteristic exists.
DOMString characteristicInstanceId

The instance ID of the requested GATT characteristic.

Promise<BluetoothGATTDescriptor> getDescriptor()
Get the GATT characteristic descriptor with the given instance ID.
DOMString descriptorInstanceId

The instance ID of the requested GATT characteristic descriptor.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 250 of 298

K.15. EVENTS

K.16. BLUETOOTH TREE

navigator.bluetooth and objects implementing the BluetoothDevice,
BluetoothGATTService, BluetoothGATTCharacteristic, or
BluetoothGATTDescriptor interface participate in a tree, simply named the
Bluetooth tree.

• The children of navigator.bluetooth are the BluetoothDevice objects
representing devices on the origin's allowed devices list, in an
unspecified order.

• The children of a BluetoothDevice are the BluetoothGATTService objects
representing Primary and Secondary Services on its GATT Server whose
UUIDs are on the origin and device's allowed services list. The order
of the primary services MUST be consistent with the order returned
by the Discover Primary Service by Service UUID procedure
([[!BLUETOOTH41]] 3.G.4.4.2), but secondary services and primary
services with different UUIDs may be in any order.

• The children of a BluetoothGATTService are the
BluetoothGATTCharacteristic objects representing its Characteristics.
The order of the characteristics MUST be consistent with the order
returned by the Discover Characteristics by UUID procedure
([[!BLUETOOTH41]] 3.G.4.6.2), but characteristics with different UUIDs
may be in any order.

• The children of a BluetoothGATTCharacteristic are the
BluetoothGATTDescriptor objects representing its Descriptors in the
order returned by the Discover All Characteristic Descriptors procedure
([[!BLUETOOTH41]] 3.G.4.7.1)

K.17. EVENT TYPES

characteristicvaluechanged
Fired on a BluetoothGATTCharacteristic when its value changes, either as
a result of a read request, or a value change notification/indication.

serviceadded
Fired on a new BluetoothGATTService when it has been discovered on a
remote device, just after it is added to the Bluetooth tree.

servicechanged
Fired on a BluetoothGATTService when its state changes. This involves
any characteristics and/or descriptors that get added or removed from
the service, as well as Service Changed indications ([[!BLUETOOTH41]]
3.G.7.1) from the remote device.

serviceremoved
Fired on a BluetoothGATTService when it has been removed from its
device, just before it is removed from the Bluetooth tree.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 251 of 298

https://dom.spec.whatwg.org/#concept-tree-participate
https://dom.spec.whatwg.org/#concept-tree-child
https://dom.spec.whatwg.org/#concept-tree-child
https://dom.spec.whatwg.org/#concept-tree-child
https://dom.spec.whatwg.org/#concept-tree-child

K.18. RESPONDING TO NOTIFICATIONS AND
INDICATIONS

When the UA receives a Bluetooth Notification ([[!BLUETOOTH41]] 3.G.4.10)
or Indication ([[!BLUETOOTH41]] 3.G.4.11) for a Characteristic, it must
perform the following steps:

1. For each bluetoothGlobal in the active notification context set for the
Characteristic, queue a task on the event loop of the script settings
object of bluetoothGlobal to do the following steps:

1. Let characteristicObject be the BluetoothGATTCharacteristic in
the Bluetooth tree rooted at bluetoothGlobal that represents the
Characteristic.

2. Set characteristicObject.value to a new ArrayBuffer holding
the new value of the Characteristic.

3. Fire an event named characteristicvaluechanged with its
bubbles attribute initialized to true at characteristicObject.

K.19. RESPONDING TO SERVICE CHANGES

The Bluetooth Attribute Caching system ([[!BLUETOOTH41]] 3.G.2.5.2) allows
clients to track changes to Services, Characteristics, and Descriptors. Before
discovering any of these entities for the purpose of exposing them to a web
page the UA MUST subscribe to Indications from the Service Changed
characteristic ([[!BLUETOOTH41]] 3.G.7.1), if it exists. When the UA receives
an Indication on the Service Changed characteristic, it MUST perform the
following steps.

1. Let removedEntities be the list of entities in the range indicated by the
Service Changed characteristic that the UA had discovered before the
Indication.

2. Use the Primary Service Discovery, Relationship Discovery,
Characteristic Discovery, and Characteristic Descriptor Discovery
procedures ([[!BLUETOOTH41]] 3.G 4.4, 4.5, 4.6, and 4.7) to re-discover
entities in the range indicated by the Service Changed characteristic.
The UA MAY skip discovering all or part of the indicated range if it can
prove that the results of that discovery could not affect the events fired
below.

3. Let addedEntities be the list of entities discovered in the previous step.
4. If an entity with the same definition, ignoring Characteristic and

Descriptor values, appears in both removedEntities and addedEntities,
remove it from both.

5. Let changedServices be a set of Services, initially empty.
6. If the same Service appears in both removedEntities and addedEntities,

remove it from both, and add it to changedServices. Services with
different UUIDs or Primary/Secondary status MUST NOT be considered
"the same", but this specification says nothing else about determining
identity.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 252 of 298

https://html.spec.whatwg.org/multipage/webappapis.html#queue-a-task
https://dom.spec.whatwg.org/#concept-event-fire

7. For each Characteristic and Descriptor in removedEntities and
addedEntities, remove it from its original list, and add its parent Service
to changedServices. After this point, removedEntities and addedEntities
contain only Services.

8. If a Service in addedEntities would not have been returned to any script
execution environment if it had existed at the time of any previous call
to getPrimaryService, getPrimaryServices, getIncludedService, or
getIncludedServices, the UA MAY remove the Service from
addedEntities.

9. Let changedDevices be the set of Bluetooth devices that contain any
Service in removedEntities, addedEntities, and changedServices.

10. For each script execution environment that is connected to a device in
changedDevices, queue a task on its event loop to do the following steps:

1. For each Service in removedEntities, fire an event named
serviceremoved with its bubbles attribute initialized to true
at the BluetoothGATTService representing the Service. Then
remove this BluetoothGATTService from the Bluetooth tree.

2. For each Service in addedEntities, add the BluetoothGATTService
representing this Service to the Bluetooth tree. Then fire an event
named serviceadded with its bubbles attribute initialized to true
at the BluetoothGATTService.

3. For each Service in changedServices, fire an event named
servicechanged with its bubbles attribute initialized to true at
the BluetoothGATTService representing the Service.

K.20. IDL EVENT HANDLERS

attribute EventHandler oncharacteristicvaluechanged
Event handler IDL attribute for the characteristicvaluechanged event
type.

attribute EventHandler onserviceadded
Event handler IDL attribute for the serviceadded event type.

attribute EventHandler onservicechanged
Event handler IDL attribute for the servicechanged event type.

attribute EventHandler onserviceremoved
Event handler IDL attribute for the serviceremoved event type.

K.21. ERROR HANDLING

This section primarily defines the mapping from system errors to Javascript
error names and allows UAs to retry certain operations. The retry logic and
possible error distinctions are highly constrained by the operating system, so
places these requirements don't reflect reality are likely spec bugs instead of
browser bugs.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 253 of 298

https://html.spec.whatwg.org/multipage/webappapis.html#queue-a-task
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://html.spec.whatwg.org/multipage/webappapis.html#event-handler-idl-attributes
https://html.spec.whatwg.org/multipage/webappapis.html#event-handler-idl-attributes
https://html.spec.whatwg.org/multipage/webappapis.html#event-handler-idl-attributes
https://html.spec.whatwg.org/multipage/webappapis.html#event-handler-idl-attributes

When a step in an algorithm that uses a Bluetooth GATT procedure
([[!BLUETOOTH41]] 3.G.4) says to "Use the Bluetooth error recovery
procedure" with a promise, the UA MUST perform the following steps:

1. If the Bluetooth procedure completes with anything other than an
code>Error Response ([[!BLUETOOTH41]] 3.F.3.4.1.1), the recovery
procedure succeeds. Abort these steps.

2. If the procedure times out ([[!BLUETOOTH41]] 3.G.4.14) or the ATT
Bearer ([[!BLUETOOTH41]] 3.G.2.4) is terminated for any reason, reject
the promise with a NetworkError and abort these steps. The recovery
procedure fails.

3. Take the following actions depending on the Error Code:
Invalid Handle
Invalid PDU
Invalid Offset
Attribute Not Found
Unsupported Group Type

These error codes indicate that something unexpected happened at
the protocol layer, likely either due to a UA or device bug. Reject the
promise with a NotSupportedError. The recovery procedure fails.

Invalid Attribute Value Length
Reject the promise with an InvalidModificationError. The recovery
procedure fails.

Attribute Not Long
If this error code is received without having used a "Long" sub-
procedure, this may indicate a device bug. Reject the promise with a
NotSupportedError, and the recovery procedure fails.

Otherwise, retry the GATT procedure without using a "Long" sub-
procedure. If this is impossible due to the length of the value being
written, reject the promise with an InvalidModificationError, and the
recovery procedure fails.

Insufficient Authentication
Insufficient Encryption
Insufficient Encryption Key Size

The UA SHOULD attempt to increase the security level of the
connection. If this attempt fails or the UA doesn't support any higher
security, reject the promise with a SecurityError, and the recovery
procedure fails. Otherwise, retry the GATT procedure at the new
higher security level.

Insufficient Authorization
Reject the promise with a SecurityError, and the recovery procedure
fails.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 254 of 298

Read Not Permitted
Write Not Permitted
Request Not Supported
Prepare Queue Full
Insufficient Resources
Unlikely Error
Anything else

Reject the promise with a NotSupportedError. The recovery
procedure fails.

K.22. UUIDS

A UUID string represents a 128-bit [[!RFC4122]] UUID. A valid UUID is a
string that matches the [[!ECMAScript]] regexp /^[0-9a-f]{8}-[0-9a-f]{4}-
[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/. That is, a valid UUID is lower-
case and does not use the 16- or 32-bit abbreviations defined by the Bluetooth
standard. All UUIDs returned from functions and attributes in this specification
MUST be valid UUIDs. If a function in this specification takes a parameter
whose type is UUID or a dictionary including a UUID attribute, and the
argument passed in any UUID slot is not a valid UUID, the function MUST
return a Promise rejected with a TypeError and abort its other steps.

This standard provides the canonicalUUID() function to map a 16- or 32-bit
Bluetooth UUID alias to its 128-bit form.

Bluetooth devices are required to convert 16- and 32-bit UUIDs to 128-bit
UUIDs before comparing them ([[BLUETOOTH41]] 3.F.3.2.1), but not all
devices do so. To interoperate with these devices, if the UA has received a
UUID from the device in one form (16-, 32-, or 128-bit), it should send other
aliases of that UUID back to the device in the same form.

K.23. STANDARDIZED IDENTIFIERS

The Bluetooth standard defines numbers that identify services, characteristics,
descriptors, and other entities. This section provides javascript names for these
constants so they don't need to be replicated in each application.

readonly attribute BluetoothUuidsUnit unit

readonly attribute BluetoothUuidsService service

readonly attribute BluetoothUuidsCharacteristic characteristic

readonly attribute BluetoothUuidsDescriptor descriptor

UUID canonicalUUID(unsigned long alias)
Returns a 128-bit UUID given a 16- or 32-bit Bluetooth UUID alias. The
algorithm for converting an alias to a full 128-bit UUID is defined in
[[!BLUETOOTH41]] Volume 3 Part B Section 2.5.1: the top 32 bits of

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 255 of 298

"00000000-0000-1000-8000-00805f9b34fb" are replaced by the bits of
the alias. For example, canonicalUUID(0xDEADBEEF) returns
"deadbeef-0000-1000-8000-00805f9b34fb".

K.24. STANDARD GATT UNITS

Each standardized unit listed in [[!BLUETOOTH-NUMBERS-UNITS]] MUST be
reflected into navigator.bluetooth.uuids.unit under the name listed under
"Type" with org.bluetooth.unit. removed.

readonly attribute UUID unitless
canonicalUUID(0x2700)

readonly attribute UUID length.metre
canonicalUUID(0x2701)

readonly attribute UUID mass.kilogram
canonicalUUID(0x2702)

readonly attribute UUID time.second
canonicalUUID(0x2703)

readonly attribute UUID electric_current.ampere
canonicalUUID(0x2704)

readonly attribute UUID thermodynamic_temperature.kelvin
canonicalUUID(0x2705)

readonly attribute UUID amount_of_substance.mole
canonicalUUID(0x2706)

readonly attribute UUID luminous_intensity.candela
canonicalUUID(0x2707)

readonly attribute UUID area.square_metres
canonicalUUID(0x2710)

readonly attribute UUID volume.cubic_metres
canonicalUUID(0x2711)

readonly attribute UUID velocity.metres_per_second
canonicalUUID(0x2712)

readonly attribute UUID acceleration.metres_per_second_squared
canonicalUUID(0x2713)

readonly attribute UUID wavenumber.reciprocal_metre
canonicalUUID(0x2714)

readonly attribute UUID density.kilogram_per_cubic_metre
canonicalUUID(0x2715)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 256 of 298

readonly attribute UUID surface_density.kilogram_per_square_metre
canonicalUUID(0x2716)

readonly attribute UUID specific_volume.cubic_metre_per_kilogram
canonicalUUID(0x2717)

readonly attribute UUID current_density.ampere_per_square_metre
canonicalUUID(0x2718)

readonly attribute UUID magnetic_field_strength.ampere_per_metre
canonicalUUID(0x2719)

readonly attribute UUID amount_concentration.mole_per_cubic_metre
canonicalUUID(0x271A)

readonly attribute UUID
mass_concentration.kilogram_per_cubic_metre

canonicalUUID(0x271B)

readonly attribute UUID luminance.candela_per_square_metre
canonicalUUID(0x271C)

readonly attribute UUID refractive_index
canonicalUUID(0x271D)

readonly attribute UUID relative_permeability
canonicalUUID(0x271E)

readonly attribute UUID plane_angle.radian
canonicalUUID(0x2720)

readonly attribute UUID solid_angle.steradian
canonicalUUID(0x2721)

readonly attribute UUID frequency.hertz
canonicalUUID(0x2722)

readonly attribute UUID force.newton
canonicalUUID(0x2723)

readonly attribute UUID pressure.pascal
canonicalUUID(0x2724)

readonly attribute UUID energy.joule
canonicalUUID(0x2725)

readonly attribute UUID power.watt
canonicalUUID(0x2726)

readonly attribute UUID electric_charge.coulomb
canonicalUUID(0x2727)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 257 of 298

readonly attribute UUID electric_potential_difference.volt
canonicalUUID(0x2728)

readonly attribute UUID capacitance.farad
canonicalUUID(0x2729)

readonly attribute UUID electric_resistance.ohm
canonicalUUID(0x272A)

readonly attribute UUID electric_conductance.siemens
canonicalUUID(0x272B)

readonly attribute UUID magnetic_flux.weber
canonicalUUID(0x272C)

readonly attribute UUID magnetic_flux_density.tesla
canonicalUUID(0x272D)

readonly attribute UUID inductance.henry
canonicalUUID(0x272E)

readonly attribute UUID thermodynamic_temperature.degree_celsius
canonicalUUID(0x272F)

readonly attribute UUID luminous_flux.lumen
canonicalUUID(0x2730)

readonly attribute UUID illuminance.lux
canonicalUUID(0x2731)

readonly attribute UUID activity_referred_to_a_radionuclide.becquerel
canonicalUUID(0x2732)

readonly attribute UUID absorbed_dose.gray
canonicalUUID(0x2733)

readonly attribute UUID dose_equivalent.sievert
canonicalUUID(0x2734)

readonly attribute UUID catalytic_activity.katal
canonicalUUID(0x2735)

readonly attribute UUID dynamic_viscosity.pascal_second
canonicalUUID(0x2740)

readonly attribute UUID moment_of_force.newton_metre
canonicalUUID(0x2741)

readonly attribute UUID surface_tension.newton_per_metre
canonicalUUID(0x2742)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 258 of 298

readonly attribute UUID angular_velocity.radian_per_second
canonicalUUID(0x2743)

readonly attribute UUID
angular_acceleration.radian_per_second_squared

canonicalUUID(0x2744)

readonly attribute UUID heat_flux_density.watt_per_square_metre
canonicalUUID(0x2745)

readonly attribute UUID heat_capacity.joule_per_kelvin
canonicalUUID(0x2746)

readonly attribute UUID
specific_heat_capacity.joule_per_kilogram_kelvin

canonicalUUID(0x2747)

readonly attribute UUID specific_energy.joule_per_kilogram
canonicalUUID(0x2748)

readonly attribute UUID thermal_conductivity.watt_per_metre_kelvin
canonicalUUID(0x2749)

readonly attribute UUID energy_density.joule_per_cubic_metre
canonicalUUID(0x274A)

readonly attribute UUID electric_field_strength.volt_per_metre
canonicalUUID(0x274B)

readonly attribute UUID
electric_charge_density.coulomb_per_cubic_metre

canonicalUUID(0x274C)

readonly attribute UUID
surface_charge_density.coulomb_per_square_metre

canonicalUUID(0x274D)

readonly attribute UUID
electric_flux_density.coulomb_per_square_metre

canonicalUUID(0x274E)

readonly attribute UUID permittivity.farad_per_metre
canonicalUUID(0x274F)

readonly attribute UUID permeability.henry_per_metre
canonicalUUID(0x2750)

readonly attribute UUID molar_energy.joule_per_mole
canonicalUUID(0x2751)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 259 of 298

readonly attribute UUID molar_entropy.joule_per_mole_kelvin
canonicalUUID(0x2752)

readonly attribute UUID exposure.coulomb_per_kilogram
canonicalUUID(0x2753)

readonly attribute UUID absorbed_dose_rate.gray_per_second
canonicalUUID(0x2754)

readonly attribute UUID radiant_intensity.watt_per_steradian
canonicalUUID(0x2755)

readonly attribute UUID radiance.watt_per_square_metre_steradian
canonicalUUID(0x2756)

readonly attribute UUID
catalytic_activity_concentration.katal_per_cubic_metre

canonicalUUID(0x2757)

readonly attribute UUID time.minute
canonicalUUID(0x2760)

readonly attribute UUID time.hour
canonicalUUID(0x2761)

readonly attribute UUID time.day
canonicalUUID(0x2762)

readonly attribute UUID plane_angle.degree
canonicalUUID(0x2763)

readonly attribute UUID plane_angle.minute
canonicalUUID(0x2764)

readonly attribute UUID plane_angle.second
canonicalUUID(0x2765)

readonly attribute UUID area.hectare
canonicalUUID(0x2766)

readonly attribute UUID volume.litre
canonicalUUID(0x2767)

readonly attribute UUID mass.tonne
canonicalUUID(0x2768)

readonly attribute UUID pressure.bar
canonicalUUID(0x2780)

readonly attribute UUID pressure.millimetre_of_mercury
canonicalUUID(0x2781)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 260 of 298

readonly attribute UUID length.ångström
canonicalUUID(0x2782)

readonly attribute UUID length.nautical_mile
canonicalUUID(0x2783)

readonly attribute UUID area.barn
canonicalUUID(0x2784)

readonly attribute UUID velocity.knot
canonicalUUID(0x2785)

readonly attribute UUID logarithmic_radio_quantity.neper
canonicalUUID(0x2786)

readonly attribute UUID logarithmic_radio_quantity.bel
canonicalUUID(0x2787)

readonly attribute UUID length.yard
canonicalUUID(0x27A0)

readonly attribute UUID length.parsec
canonicalUUID(0x27A1)

readonly attribute UUID length.inch
canonicalUUID(0x27A2)

readonly attribute UUID length.foot
canonicalUUID(0x27A3)

readonly attribute UUID length.mile
canonicalUUID(0x27A4)

readonly attribute UUID pressure.pound_force_per_square_inch
canonicalUUID(0x27A5)

readonly attribute UUID velocity.kilometre_per_hour
canonicalUUID(0x27A6)

readonly attribute UUID velocity.mile_per_hour
canonicalUUID(0x27A7)

readonly attribute UUID angular_velocity.revolution_per_minute
canonicalUUID(0x27A8)

readonly attribute UUID energy.gram_calorie
canonicalUUID(0x27A9)

readonly attribute UUID energy.kilogram_calorie
canonicalUUID(0x27AA)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 261 of 298

readonly attribute UUID energy.kilowatt_hour
canonicalUUID(0x27AB)

readonly attribute UUID
thermodynamic_temperature.degree_fahrenheit

canonicalUUID(0x27AC)

readonly attribute UUID percentage
canonicalUUID(0x27AD)

readonly attribute UUID per_mille
canonicalUUID(0x27AE)

readonly attribute UUID period.beats_per_minute
canonicalUUID(0x27AF)

readonly attribute UUID electric_charge.ampere_hours
canonicalUUID(0x27B0)

readonly attribute UUID mass_density.milligram_per_decilitre
canonicalUUID(0x27B1)

readonly attribute UUID mass_density.millimole_per_litre
canonicalUUID(0x27B2)

readonly attribute UUID time.year
canonicalUUID(0x27B3)

readonly attribute UUID time.month
canonicalUUID(0x27B4)

readonly attribute UUID concentration.count_per_cubic_metre
canonicalUUID(0x27B5)

readonly attribute UUID irradiance.watt_per_square_metre
canonicalUUID(0x27B6)

readonly attribute UUID milliliter_per_kilogram_per_minute
canonicalUUID(0x27B7)

readonly attribute UUID mass.pound
canonicalUUID(0x27B8)

K.25. STANDARD GATT SERVICES

Each standardized service listed in [[!BLUETOOTH-NUMBERS-SERVICES]]
MUST be reflected into navigator.bluetooth.uuids.service under the
name listed under "SpecificationType" with org.bluetooth.service.
removed.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 262 of 298

readonly attribute UUID alert_notification
canonicalUUID(0x1811)

readonly attribute UUID battery_service
canonicalUUID(0x180F)

readonly attribute UUID blood_pressure
canonicalUUID(0x1810)

readonly attribute UUID current_time
canonicalUUID(0x1805)

readonly attribute UUID cycling_power
canonicalUUID(0x1818)

readonly attribute UUID cycling_speed_and_cadence
canonicalUUID(0x1816)

readonly attribute UUID device_information
canonicalUUID(0x180A)

readonly attribute UUID generic_access
canonicalUUID(0x1800)

readonly attribute UUID generic_attribute
canonicalUUID(0x1801)

readonly attribute UUID glucose
canonicalUUID(0x1808)

readonly attribute UUID health_thermometer
canonicalUUID(0x1809)

readonly attribute UUID heart_rate
canonicalUUID(0x180D)

readonly attribute UUID human_interface_device
canonicalUUID(0x1812)

readonly attribute UUID immediate_alert
canonicalUUID(0x1802)

readonly attribute UUID link_loss
canonicalUUID(0x1803)

readonly attribute UUID location_and_navigation
canonicalUUID(0x1819)

readonly attribute UUID next_dst_change
canonicalUUID(0x1807)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 263 of 298

readonly attribute UUID phone_alert_status
canonicalUUID(0x180E)

readonly attribute UUID reference_time_update
canonicalUUID(0x1806)

readonly attribute UUID running_speed_and_cadence
canonicalUUID(0x1814)

readonly attribute UUID scan_parameters
canonicalUUID(0x1813)

readonly attribute UUID tx_power
canonicalUUID(0x1804)

readonly attribute UUID user_data
canonicalUUID(0x181C)

The BluetoothServiceName enumeration allows users to pass the standardized
services by name instead of looking up their UUIDs inside
navigator.bluetooth.uuids.service. When used as a parameter to a
function in this specification that accepts a BluetoothServiceUuid parameter,
these enumeration values MUST be treated as equivalent to the UUID they
refer to.

alert_notification
refers to canonicalUUID(0x1811)

battery_service
refers to canonicalUUID(0x180F)

blood_pressure
refers to canonicalUUID(0x1810)

current_time
refers to canonicalUUID(0x1805)

cycling_power
refers to canonicalUUID(0x1818)

cycling_speed_and_cadence
refers to canonicalUUID(0x1816)

device_information
refers to canonicalUUID(0x180A)

generic_access
refers to canonicalUUID(0x1800)

generic_attribute
refers to canonicalUUID(0x1801)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 264 of 298

glucose
refers to canonicalUUID(0x1808)

health_thermometer
refers to canonicalUUID(0x1809)

heart_rate
refers to canonicalUUID(0x180D)

human_interface_device
refers to canonicalUUID(0x1812)

immediate_alert
refers to canonicalUUID(0x1802)

link_loss
refers to canonicalUUID(0x1803)

location_and_navigation
refers to canonicalUUID(0x1819)

next_dst_change
refers to canonicalUUID(0x1807)

phone_alert_status
refers to canonicalUUID(0x180E)

reference_time_update
refers to canonicalUUID(0x1806)

running_speed_and_cadence
refers to canonicalUUID(0x1814)

scan_parameters
refers to canonicalUUID(0x1813)

tx_power
refers to canonicalUUID(0x1804)

user_data
refers to canonicalUUID(0x181C)

K.26. STANDARD GATT CHARACTERISTICS

Each standardized characteristic listed in [[!BLUETOOTH-NUMBERS-
CHARACTERISTICS]] MUST be reflected into
navigator.bluetooth.uuids.characteristic under the name listed under
"SpecificationType" with org.bluetooth.characteristic. removed.

readonly attribute UUID aerobic_heart_rate_lower_limit
canonicalUUID(0x2A7E)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 265 of 298

readonly attribute UUID aerobic_heart_rate_upper_limit
canonicalUUID(0x2A84)

readonly attribute UUID aerobic_threshold
canonicalUUID(0x2A7F)

readonly attribute UUID age
canonicalUUID(0x2A80)

readonly attribute UUID alert_category_id
canonicalUUID(0x2A43)

readonly attribute UUID alert_category_id_bit_mask
canonicalUUID(0x2A42)

readonly attribute UUID alert_level
canonicalUUID(0x2A06)

readonly attribute UUID alert_notification_control_point
canonicalUUID(0x2A44)

readonly attribute UUID alert_status
canonicalUUID(0x2A3F)

readonly attribute UUID anaerobic_heart_rate_lower_limit
canonicalUUID(0x2A81)

readonly attribute UUID anaerobic_heart_rate_upper_limit
canonicalUUID(0x2A82)

readonly attribute UUID anaerobic_threshold
canonicalUUID(0x2A83)

readonly attribute UUID gap.appearance
canonicalUUID(0x2A01)

readonly attribute UUID battery_level
canonicalUUID(0x2A19)

readonly attribute UUID blood_pressure_feature
canonicalUUID(0x2A49)

readonly attribute UUID blood_pressure_measurement
canonicalUUID(0x2A35)

readonly attribute UUID body_sensor_location
canonicalUUID(0x2A38)

readonly attribute UUID boot_keyboard_input_report
canonicalUUID(0x2A22)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 266 of 298

readonly attribute UUID boot_keyboard_output_report
canonicalUUID(0x2A32)

readonly attribute UUID boot_mouse_input_report
canonicalUUID(0x2A33)

readonly attribute UUID csc_feature
canonicalUUID(0x2A5C)

readonly attribute UUID csc_measurement
canonicalUUID(0x2A5B)

readonly attribute UUID current_time
canonicalUUID(0x2A2B)

readonly attribute UUID cycling_power_control_point
canonicalUUID(0x2A66)

readonly attribute UUID cycling_power_feature
canonicalUUID(0x2A65)

readonly attribute UUID cycling_power_measurement
canonicalUUID(0x2A63)

readonly attribute UUID cycling_power_vector
canonicalUUID(0x2A64)

readonly attribute UUID database_change_increment
canonicalUUID(0x2A99)

readonly attribute UUID date_of_birth
canonicalUUID(0x2A85)

readonly attribute UUID date_of_threshold_assessment
canonicalUUID(0x2A86)

readonly attribute UUID date_time
canonicalUUID(0x2A08)

readonly attribute UUID day_date_time
canonicalUUID(0x2A0A)

readonly attribute UUID day_of_week
canonicalUUID(0x2A09)

readonly attribute UUID gap.device_name
canonicalUUID(0x2A00)

readonly attribute UUID dst_offset
canonicalUUID(0x2A0D)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 267 of 298

readonly attribute UUID email_address
canonicalUUID(0x2A87)

readonly attribute UUID exact_time_256
canonicalUUID(0x2A0C)

readonly attribute UUID fat_burn_heart_rate_lower_limit
canonicalUUID(0x2A88)

readonly attribute UUID fat_burn_heart_rate_upper_limit
canonicalUUID(0x2A89)

readonly attribute UUID firmware_revision_string
canonicalUUID(0x2A26)

readonly attribute UUID first_name
canonicalUUID(0x2A8A)

readonly attribute UUID five_zone_heart_rate_limits
canonicalUUID(0x2A8B)

readonly attribute UUID gender
canonicalUUID(0x2A8C)

readonly attribute UUID glucose_feature
canonicalUUID(0x2A51)

readonly attribute UUID glucose_measurement
canonicalUUID(0x2A18)

readonly attribute UUID glucose_measurement_context
canonicalUUID(0x2A34)

readonly attribute UUID hardware_revision_string
canonicalUUID(0x2A27)

readonly attribute UUID heart_rate_control_point
canonicalUUID(0x2A39)

readonly attribute UUID heart_rate_max
canonicalUUID(0x2A8D)

readonly attribute UUID heart_rate_measurement
canonicalUUID(0x2A37)

readonly attribute UUID height
canonicalUUID(0x2A8E)

readonly attribute UUID hid_control_point
canonicalUUID(0x2A4C)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 268 of 298

readonly attribute UUID hid_information
canonicalUUID(0x2A4A)

readonly attribute UUID hip_circumference
canonicalUUID(0x2A8F)

readonly attribute UUID
ieee_11073-20601_regulatory_certification_data_list

canonicalUUID(0x2A2A)

readonly attribute UUID intermediate_blood_pressure
canonicalUUID(0x2A36)

readonly attribute UUID intermediate_temperature
canonicalUUID(0x2A1E)

readonly attribute UUID language
canonicalUUID(0x2AA2)

readonly attribute UUID last_name
canonicalUUID(0x2A90)

readonly attribute UUID ln_control_point
canonicalUUID(0x2A6B)

readonly attribute UUID ln_feature
canonicalUUID(0x2A6A)

readonly attribute UUID local_time_information
canonicalUUID(0x2A0F)

readonly attribute UUID location_and_speed
canonicalUUID(0x2A67)

readonly attribute UUID manufacturer_name_string
canonicalUUID(0x2A29)

readonly attribute UUID maximum_recommended_heart_rate
canonicalUUID(0x2A91)

readonly attribute UUID measurement_interval
canonicalUUID(0x2A21)

readonly attribute UUID model_number_string
canonicalUUID(0x2A24)

readonly attribute UUID navigation
canonicalUUID(0x2A68)

readonly attribute UUID new_alert
canonicalUUID(0x2A46)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 269 of 298

readonly attribute UUID
gap.peripheral_preferred_connection_parameters

canonicalUUID(0x2A04)

readonly attribute UUID gap.peripheral_privacy_flag
canonicalUUID(0x2A02)

readonly attribute UUID pnp_id
canonicalUUID(0x2A50)

readonly attribute UUID position_quality
canonicalUUID(0x2A69)

readonly attribute UUID protocol_mode
canonicalUUID(0x2A4E)

readonly attribute UUID gap.reconnection_address
canonicalUUID(0x2A03)

readonly attribute UUID record_access_control_point
canonicalUUID(0x2A52)

readonly attribute UUID reference_time_information
canonicalUUID(0x2A14)

readonly attribute UUID report
canonicalUUID(0x2A4D)

readonly attribute UUID report_map
canonicalUUID(0x2A4B)

readonly attribute UUID resting_heart_rate
canonicalUUID(0x2A92)

readonly attribute UUID ringer_control_point
canonicalUUID(0x2A40)

readonly attribute UUID ringer_setting
canonicalUUID(0x2A41)

readonly attribute UUID rsc_feature
canonicalUUID(0x2A54)

readonly attribute UUID rsc_measurement
canonicalUUID(0x2A53)

readonly attribute UUID sc_control_point
canonicalUUID(0x2A55)

readonly attribute UUID scan_interval_window
canonicalUUID(0x2A4F)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 270 of 298

readonly attribute UUID scan_refresh
canonicalUUID(0x2A31)

readonly attribute UUID sensor_location
canonicalUUID(0x2A5D)

readonly attribute UUID serial_number_string
canonicalUUID(0x2A25)

readonly attribute UUID gatt.service_changed
canonicalUUID(0x2A05)

readonly attribute UUID software_revision_string
canonicalUUID(0x2A28)

readonly attribute UUID
sport_type_for_aerobic_and_anaerobic_thresholds

canonicalUUID(0x2A93)

readonly attribute UUID supported_new_alert_category
canonicalUUID(0x2A47)

readonly attribute UUID supported_unread_alert_category
canonicalUUID(0x2A48)

readonly attribute UUID system_id
canonicalUUID(0x2A23)

readonly attribute UUID temperature_measurement
canonicalUUID(0x2A1C)

readonly attribute UUID temperature_type
canonicalUUID(0x2A1D)

readonly attribute UUID three_zone_heart_rate_limits
canonicalUUID(0x2A94)

readonly attribute UUID time_accuracy
canonicalUUID(0x2A12)

readonly attribute UUID time_source
canonicalUUID(0x2A13)

The BluetoothCharacteristicName enumeration allows users to pass the
standardized characteristics by name instead of looking up their UUIDs inside
navigator.bluetooth.uuids.characteristic. When used as a parameter to
a function in this specification that accepts a BluetoothCharacteristicUuid
parameter, these enumeration values MUST be treated as equivalent to the
UUID they refer to.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 271 of 298

aerobic_heart_rate_lower_limit
refers to canonicalUUID(0x2A7E)

aerobic_heart_rate_upper_limit
refers to canonicalUUID(0x2A84)

aerobic_threshold
refers to canonicalUUID(0x2A7F)

age
refers to canonicalUUID(0x2A80)

alert_category_id
refers to canonicalUUID(0x2A43)

alert_category_id_bit_mask
refers to canonicalUUID(0x2A42)

alert_level
refers to canonicalUUID(0x2A06)

alert_notification_control_point
refers to canonicalUUID(0x2A44)

alert_status
refers to canonicalUUID(0x2A3F)

anaerobic_heart_rate_lower_limit
refers to canonicalUUID(0x2A81)

anaerobic_heart_rate_upper_limit
refers to canonicalUUID(0x2A82)

anaerobic_threshold
refers to canonicalUUID(0x2A83)

gap.appearance
refers to canonicalUUID(0x2A01)

battery_level
refers to canonicalUUID(0x2A19)

blood_pressure_feature
refers to canonicalUUID(0x2A49)

blood_pressure_measurement
refers to canonicalUUID(0x2A35)

body_sensor_location
refers to canonicalUUID(0x2A38)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 272 of 298

boot_keyboard_input_report
refers to canonicalUUID(0x2A22)

boot_keyboard_output_report
refers to canonicalUUID(0x2A32)

boot_mouse_input_report
refers to canonicalUUID(0x2A33)

csc_feature
refers to canonicalUUID(0x2A5C)

csc_measurement
refers to canonicalUUID(0x2A5B)

current_time
refers to canonicalUUID(0x2A2B)

cycling_power_control_point
refers to canonicalUUID(0x2A66)

cycling_power_feature
refers to canonicalUUID(0x2A65)

cycling_power_measurement
refers to canonicalUUID(0x2A63)

cycling_power_vector
refers to canonicalUUID(0x2A64)

database_change_increment
refers to canonicalUUID(0x2A99)

date_of_birth
refers to canonicalUUID(0x2A85)

date_of_threshold_assessment
refers to canonicalUUID(0x2A86)

date_time
refers to canonicalUUID(0x2A08)

day_date_time
refers to canonicalUUID(0x2A0A)

day_of_week
refers to canonicalUUID(0x2A09)

gap.device_name
refers to canonicalUUID(0x2A00)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 273 of 298

dst_offset
refers to canonicalUUID(0x2A0D)

email_address
refers to canonicalUUID(0x2A87)

exact_time_256
refers to canonicalUUID(0x2A0C)

fat_burn_heart_rate_lower_limit
refers to canonicalUUID(0x2A88)

fat_burn_heart_rate_upper_limit
refers to canonicalUUID(0x2A89)

firmware_revision_string
refers to canonicalUUID(0x2A26)

first_name
refers to canonicalUUID(0x2A8A)

five_zone_heart_rate_limits
refers to canonicalUUID(0x2A8B)

gender
refers to canonicalUUID(0x2A8C)

glucose_feature
refers to canonicalUUID(0x2A51)

glucose_measurement
refers to canonicalUUID(0x2A18)

glucose_measurement_context
refers to canonicalUUID(0x2A34)

hardware_revision_string
refers to canonicalUUID(0x2A27)

heart_rate_control_point
refers to canonicalUUID(0x2A39)

heart_rate_max
refers to canonicalUUID(0x2A8D)

heart_rate_measurement
refers to canonicalUUID(0x2A37)

height
refers to canonicalUUID(0x2A8E)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 274 of 298

hid_control_point
refers to canonicalUUID(0x2A4C)

hid_information
refers to canonicalUUID(0x2A4A)

hip_circumference
refers to canonicalUUID(0x2A8F)

ieee_11073-20601_regulatory_certification_data_list
refers to canonicalUUID(0x2A2A)

intermediate_blood_pressure
refers to canonicalUUID(0x2A36)

intermediate_temperature
refers to canonicalUUID(0x2A1E)

language
refers to canonicalUUID(0x2AA2)

last_name
refers to canonicalUUID(0x2A90)

ln_control_point
refers to canonicalUUID(0x2A6B)

ln_feature
refers to canonicalUUID(0x2A6A)

local_time_information
refers to canonicalUUID(0x2A0F)

location_and_speed
refers to canonicalUUID(0x2A67)

manufacturer_name_string
refers to canonicalUUID(0x2A29)

maximum_recommended_heart_rate
refers to canonicalUUID(0x2A91)

measurement_interval
refers to canonicalUUID(0x2A21)

model_number_string
refers to canonicalUUID(0x2A24)

navigation
refers to canonicalUUID(0x2A68)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 275 of 298

new_alert
refers to canonicalUUID(0x2A46)

gap.peripheral_preferred_connection_parameters
refers to canonicalUUID(0x2A04)

gap.peripheral_privacy_flag
refers to canonicalUUID(0x2A02)

pnp_id
refers to canonicalUUID(0x2A50)

position_quality
refers to canonicalUUID(0x2A69)

protocol_mode
refers to canonicalUUID(0x2A4E)

gap.reconnection_address
refers to canonicalUUID(0x2A03)

record_access_control_point
refers to canonicalUUID(0x2A52)

reference_time_information
refers to canonicalUUID(0x2A14)

report
refers to canonicalUUID(0x2A4D)

report_map
refers to canonicalUUID(0x2A4B)

resting_heart_rate
refers to canonicalUUID(0x2A92)

ringer_control_point
refers to canonicalUUID(0x2A40)

ringer_setting
refers to canonicalUUID(0x2A41)

rsc_feature
refers to canonicalUUID(0x2A54)

rsc_measurement
refers to canonicalUUID(0x2A53)

sc_control_point
refers to canonicalUUID(0x2A55)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 276 of 298

scan_interval_window
refers to canonicalUUID(0x2A4F)

scan_refresh
refers to canonicalUUID(0x2A31)

sensor_location
refers to canonicalUUID(0x2A5D)

serial_number_string
refers to canonicalUUID(0x2A25)

gatt.service_changed
refers to canonicalUUID(0x2A05)

software_revision_string
refers to canonicalUUID(0x2A28)

sport_type_for_aerobic_and_anaerobic_thresholds
refers to canonicalUUID(0x2A93)

supported_new_alert_category
refers to canonicalUUID(0x2A47)

supported_unread_alert_category
refers to canonicalUUID(0x2A48)

system_id
refers to canonicalUUID(0x2A23)

temperature_measurement
refers to canonicalUUID(0x2A1C)

temperature_type
refers to canonicalUUID(0x2A1D)

three_zone_heart_rate_limits
refers to canonicalUUID(0x2A94)

time_accuracy
refers to canonicalUUID(0x2A12)

time_source
refers to canonicalUUID(0x2A13)

K.27. STANDARD GATT DESCRIPTORS

Each standardized descriptor listed in [[!BLUETOOTH-NUMBERS-
DESCRIPTORS]] MUST be reflected into
navigator.bluetooth.uuids.descriptor under the name listed under
"SpecificationType" with org.bluetooth.descriptor. removed.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 277 of 298

readonly attribute UUID gatt.characteristic_extended_properties
canonicalUUID(0x2900)

readonly attribute UUID gatt.characteristic_user_description
canonicalUUID(0x2901)

readonly attribute UUID gatt.client_characteristic_configuration
canonicalUUID(0x2902)

readonly attribute UUID gatt.server_characteristic_configuration
canonicalUUID(0x2903)

readonly attribute UUID gatt.characteristic_presentation_format
canonicalUUID(0x2904)

readonly attribute UUID gatt.characteristic_aggregate_format
canonicalUUID(0x2905)

readonly attribute UUID valid_range
canonicalUUID(0x2906)

readonly attribute UUID external_report_reference
canonicalUUID(0x2907)

readonly attribute UUID report_reference
canonicalUUID(0x2908)

The BluetoothDescriptorName enumeration allows users to pass the
standardized descriptors by name instead of looking up their UUIDs inside
navigator.bluetooth.uuids.descriptor. When used as a parameter to a
function in this specification that accepts a BluetoothDescriptorUuid
parameter, these enumeration values MUST be treated as equivalent to the
UUID they refer to.

gatt.characteristic_extended_properties
refers to canonicalUUID(0x2900)

gatt.characteristic_user_description
refers to canonicalUUID(0x2901)

gatt.client_characteristic_configuration
refers to canonicalUUID(0x2902)

gatt.server_characteristic_configuration
refers to canonicalUUID(0x2903)

gatt.characteristic_presentation_format
refers to canonicalUUID(0x2904)

gatt.characteristic_aggregate_format
refers to canonicalUUID(0x2905)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 278 of 298

valid_range
refers to canonicalUUID(0x2906)

external_report_reference
refers to canonicalUUID(0x2907)

report_reference
refers to canonicalUUID(0x2908)

K.28. INTERFACE WIRING

readonly attribute Bluetooth bluetooth
Provides access to Bluetooth APIs.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 279 of 298

L. SECURE ELEMENT API

Unofficial Draft 08 October 2014

Latest editor's draft:
http://opoto.github.io/secure-element

Editors:
Olivier Potonniée, Gemalto
Ming Yin, Deutsche Telekom

Copyright © 2014 The editors. This document is licensed under a Creative
Commons Attribution 3.0 License..

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 280 of 298

A secure element is a tamper proof device, providing a secure storage and
execution environment for sensitive data and processing. It offers both physical
and logical protection against attacks, ensuring integrity and confidentiality of
its content.

This specification defines a communication interface between a web
application and a secure element. It makes no assumption on the secure
element type, application domain, or physical communication media.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 281 of 298

This work-in-progress specification is an unofficial draft. Developers
are strongly discouraged to implement it at this stage. If you are
interested in implementing or using this API, we encourage you to contact the
editors or post on the working group mailing list.

See Changes section for history details.

L.1. INTRODUCTION

The Secure Element API defined herein allows applications to interact with
secure elements. Considered secure elements are those complying to
[[!ISO7816-4]], which defines a command/response protocol, based on
structured APDU (Application Data Unit).

L.2. TECHNICAL BACKGROUND

Secure elements addressed by this specification are micro controllers that may
come in different form factors, such as:

• Smart cards. The chip is embedded in a plastic card usually of the
size of a typical credit card. The card may show physical contacts to
communicate with the chip, or the chip may support NFC (Near Field
Communication), in which case the plastic card embeds an antenna.
Some cards also support both communication methods.

• UICC (Universal Integrated Circuit Card) are smart cards used in
cellular telephony, which may be delivered in different sizes. They are
often called SIM, which is actually the name of the application hosted
by the UICC to access GSM networks. UICC may however host other
applications.

• Smart SD cards have a similar form as usual SD cards, but internally
include a secure element, and support an extended set of SD commands
to communicate with the secure element. Some of these smart SD cards
also support NFC.

• Embedded secure elements, which are chips directly bonded on the
device mother board. Unlike other form factors, this one does not allow
interchanging or extracting the secure element, it is permanently
attached to the device.

Similarly to a computer, a secure element may host one or multiple
applications. Typical applications are mobile network authentication (SIM
cards), payment (credit cards), authentication and signature (corporate
badges, eID, etc.), loyalty, ticketing (public transports). But these are only
examples, many other applications have been and can be deployed.

Applications hosted by the secure elements are commonly named on-card
applications. Considering the limited, if any, user interface of these devices,
and application can only be useful for a user if there is also an off-card
application part, which handle the dialog with the user, or with external

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 282 of 298

http://lists.w3.org/Archives/Public/public-sysapps/

computing resources. Examples of off-card applications are ATM for payment,
mail applications for signature, access control doors for authentication, etc.
This specification defines the API to be used by off-card applications based on
web technologies.

L.3. USE CASES

This specification allows development of web applications making use of these
secure element applications. Some typical use cases that applications can
address based on this API include:

• Authentication: Instead of user name and password, access to an
online service may be protected by a strong authentication mechanism,
based on credentials stored and processed in a secure element. In
web-based operating systems, system applications such as VPN (Virtual
Private Network) or eMail application may use of the secure element to
authenticate the user.

• Digital Signature: Applications may use the secure element to digitally
sign a document or any data with a key stored in this secure element.
The signature operation itself is executed inside the secure element,
ensuring both the integrity of the signature and the confidentiality of the
key used in this process. For instance, this could be used by an eMail
application to sign emails sent by the user. Or by a government web
application to sign a online administrative request.

• Payment: Online commerce may use widely used smart credit cards,
or specific payment applications, to enforce the security of online
transactions. On cellular telephony environment, the on-card payment
application may be hosted on the SIM card, alleviating the need for the
user to handle multiple physical devices.

• Credential provisioning: The content of a secure element may be
updated to install, update or remove an application or any credential it
may host. For instance a public transport application may offer a user to
credit her NFC-enabled transport card with tickets bought online. Or a
corporate intranet web application may offer employees to renew online
the X.509 certificates hosted in their corporate badge, so that they can
do this operation from anywhere just before these certificates expire.

Whatever the form factor listed above, secure element considered in this
specification implement the same [[!ISO7816-4]] transport protocol. The
physical media (USB, NFC, or any other wired or wireless technique) used in
this communication is abstracted by the API defined in this specification.

L.4. RELATIONSHIP TO OTHER W3C APIS

This specification, although addressing some concepts similar to other W3C
specifications, has distinct use cases and offer different level of services:

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 283 of 298

• The current NFC API draft specification [[NFC]] defines an API allowing
to exchange NDEF messages with NFC tags or peers. While the Secure
Element API specified herein allows web applications to send commands
to secure elements wired or plugged in the device, or wirelessly
connected to the device thanks to NFC technology. The difference
between the different communication links (wired or NFC) is only visible
through secure element type in this API, but does not impact the way
applications would interact with the secure element. As such there is no
overlap of functionalities between the two APIs.

• The Web Cryptography API draft specification [[WEBCRYPTO]] defines
an API allowing a web application to invoke cryptographic services. Its
implementation is independent from the underlying layers performing
the actual cryptographic operations: it might be pure software, or use a
dedicated hardware such as a secure element or a TPM. As such there
is not overlap between the two APIs. Nevertheless one can imagine that
the User Agent implementing the Web Cryptography API may rely on the
Secure Element API, but this will be implementation dependent.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 284 of 298

This specification defines conformance criteria that apply to a single product:
the user agent that implements the interfaces that it contains.

Implementations that use ECMAScript to implement the APIs defined in this
specification MUST implement them in a manner consistent with the
ECMAScript Bindings defined in the Web IDL specification [[!WEBIDL]], as this
specification uses that specification and terminology.

L.5. DEPENDENCIES

This specification depends on interfaces and concepts defined in the following
specifications.

[[!HTML]]: event handler.

[[!DOM4]]: the Event and DOMException interfaces, the concept of firing an
event.

[[!ES6]]: the Promise object type.

[[!RFC6454]]: The concepts of origin and same-origin, as well as the algorithm
for serializing an origin.

[[!GP-AC]]: The Access Rules and Access Control Enforcer concepts.

Some secure element concepts are defined in ISO/IEC specifications:

• ATR (Answer to Reset) is defined in [[!ISO7816-3]]
• APDU command, APDU response, class byte, instruction byte,

parameter bytes, data field bytes, status word, basic channel and logical
channel are defined in [[!ISO7816-4]]

• AID (Application Identifier) is defined in [[!ISO7816-5]].
• UICC is defined in [[!ETSI-102216]]

L.6. SECURITY AND PRIVACY CONSIDERATIONS

Using a secure element may bring additional security to a web application, but
is not sufficient to ensure the application is secure. In particular, developers
using the Secure Element API should be aware of the following security
considerations:

• Communication between the secure element and the web application
has to be secured, in order to ensure the confidentiality and integrity
of the message exchange. This can either be achieved if the web
application using the secure element API executes in a trusted execution
environment offering guarantees on the integrity and confidentiality of
the communication link. Or it can be provided programmatically by
encryption and/or MACing of the messages exchanged with the secure

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 285 of 298

http://www.whatwg.org/specs/web-apps/current-work/#event-handlers
http://dom.spec.whatwg.org/#event
http://dom.spec.whatwg.org/#domexception
http://dom.spec.whatwg.org/#concept-event-fire
http://dom.spec.whatwg.org/#concept-event-fire
http://people.mozilla.org/~jorendorff/es6-draft.html#sec-promise-objects

element (e.g. using GlobalPlatform's secure messaging technology
[[GP]]). The off-card processing of these messages has then to be done in
a trusted execution environment, which may be on the device to which
the secure element is connected, or on a remote device (e.g. the web
application's originating server).

• Interface between the user and the web application typically consists in
displayed text and images (e.g. a transaction confirmation dialog), and
user inputs (e.g. a PIN code). Protecting this interface is out of the scope
of this specification. If the application requires such guarantee, it should
restrict its execution on Trusted Execution Environments.

• Access to secure element applications should be restricted to
authorized parties. Secure element embedded application usually
enforce such control by requiring authentication of the off-card
communicating party, for instance by asking user to present a PIN
to unlock access, or performing a mutual authentication before any
sensitive operation.
There is however a risk of denial of service (DoS) attacks, where an
attacker would e.g. deliberately present multiple invalid PIN values to
block the secure element, or sending burst of commands preventing
legitimate applications to execute optimally. In order to mitigate this
risk, this specification requires the web application runtime to
implement the access control mechanism defined in Access Control
section.

• Traceability of the user may be facilitated by the unique identifying
information the secure element may contain. Here again, the access
control defined in Access Control section will ensure only trusted
applications have access to the secure element API.

L.7. SECURE ELEMENT SERVICES

Communication with a secure element is performed through a reader, which
unlike its name suggests it not only able to read content from secure element,
but also to write or send any application specific command. Given the removal
nature of many secure elements, a reader may be empty, meaning that no
secure element is connected to this reader. For instance, a USB smart card
reader may be connected to a computer, but no smart card is inserted. Or a
device may support NFC interactions with secure elements, but none is in the
field. For this reason, the API provides a mean to query the list of available
readers, and for each of them if they are empty or if a secure element is
present. In addition, this specification defines events that are triggered when
a secure element is connected to a reader, and also when it is disconnected.

Once a web application is informed that a reader has a connected secure
element, it can open a session with it. Opening a session establishes the
communication between the web application and the secure element, and
provides a session object to the application. However a secure element is just
an application container, and the web application still needs to identify the
application with which it wants to communicate.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 286 of 298

To this intent, the session object provides a mean to open a channel with a
specific secure element application, which is uniquely identified by an AID.
The web application runtime and the secure element may then perform some
internal security checking to ensure the web application is allowed to connect
to this secure element application. If authorized, the returned channel object
is the one providing the method to send commands to the secure element
application, and get the corresponding responses.

The above steps required to send a command to a secure element creates a
set of chained objects. A reader may have several opened sessions, which may
have several opened channels. Each object has a close() method to release all
ressources associated to the target object, and invoke close() method on all
underlying objects in the chain.

The figure above represents the class relationships between the secure
element entities introduced in this specification.

L.8. ACCESS CONTROL

In order to make sure only trusted applications are allowed to use this API,
the web application runtime MUST implement the access control defined in
[[GP-AC]], which defines a simple mechanism that protects legitimate users
using non-compromised devices from malicious applications. Note that it does
not protect from a compromised device that would not properly implement the
Access Control Enforcer, which is addressed by the internal protection of the
secure element itself (using e.g. PIN or secure messaging)

L.8.1. Overall architecture

To control which applications running on a user device are allowed to access
secure element applications, several entities are involved:

• The secure element hosts a list of Access Rules. An access rule contains
the AID of the secure element application to control access to, and the
identifier of the requesting application running on the device, as well as
a filter on authorized APDUs, or a simple boolean to authorize all or no
communications.

• An Access Control Enforcer is running on the device of the client
application, inside the web application runtime. Any attempt to establish
a communication with a secure element application from this device

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 287 of 298

triggers this enforcer, which queries the secure element to get the
access rules (and usually cache them), and check that the requesting
application is authorized to communicate with the targeted secure
element application.

The figure above shows the overall access control architecture.

Sections below describe how the Global Platform Access Control is applied to
web applications. Details of the Global Platform Access Control mechanisms
itself are defined in [[!GP-AC]].

L.8.2. Trusted application identifier

The Access Control Enforcer uses an application identifier to check whether
the application is white listed in Access Rules. This identifier needs to be
trustworthy so that only authorized application may have a given identifier.
The web application runtime computes the application identifier using the
following algorithm:

• let origin be the ASCII serialization of the web application origin as
defined in [[!RFC6454]]

• set the application identifier to be the SHA-1 digest of this origin value.
The SHA-1 hash function is used here because the GlobalPlatform
Access Control specification for now only supports 20 bytes long
identifiers. A stronger algorithm will be used as soon as GlobalPlatform
updates its specification to support longer values.

All applications that are same-origin will get the same application identifier,
hence will be granted the same access rules.

While applying the GlobalPlatform Access Control process, if the Access
Control Enforcer detects the Secure Element does not implement the
GlobalPlatform Access Control (it does not have access rules), the Access
Control Enforcer may use its own policy to grant or refuse access to the Secure
Element API.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 288 of 298

L.8.3. Additional security rules

To be eligible to gain access to the Secure Element API, a web application must
meet the following requirements:

• The web application MUST be fetched using HTTPS protocol.
• The TLS/SSL server certificate of this HTTPS connection MUST be

trusted and valid:
◦ Its subject MUST match the hosting domain name.
◦ Its validity dates MUST include the current date provided by the

execution runtime.
◦ The issuance signature chain MUST be valid.
◦ The issuance chain MUST be rooted by a CA trusted by the web

application runtime.
• The user MUST NOT be able to bypass these rules. Some browsers offer

users to define "exceptions" to allow connections to a HTTPS URL even
if SSL server certificate is invalid. Such exception MUST NOT be used
to allow access to the Secure Element API.

L.9. NAVIGATOR INTERFACE

The Navigator exposes the secure element service.

readonly attribute SecureElementManager? secureElementManager
When getting the secureElementManager attribute, the user agent MUST
return the SecureElementManager object that provides access to available
secure element readers. If the user agent doesn't support secure element
features, it MUST then return undefined.

L.10. SECUREELEMENTMANAGER INTERFACE

The SecureElementManager interface provides access to secure element
readers, and is the source of events notifying the presence of secure elements.

readonly attribute Reader[] readers
This attribute MUST return the list of available readers in which a secure
element may be present. Its value MUST be an empty array if no reader
is available. It MUST be null if the close() method has been closed on
this SecureElementManager object. Several requests of this attribute MAY
return a different array value, because new readers may become available,
while others may be disconnected.

attribute EventHandler? onsepresent
Event handler for the SE-present event. This event MUST be triggered
each time any of the following situations occurs:

• Application starts while a secure element is present in a reader
• Application is running, a reader which was already listed in the

readers attribute but had no secure element now detects a present
secure element.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 289 of 298

• Application is running, a new reader is detected and has a secure
element present.

attribute EventHandler? onseremoval
Event handler for the SE-removal event. This event MUST be triggered
when a secure element which was present in a reader is not present
anymore (it has been unplugged, or is out of reach if it was connected
through wireless communication). As soon as this event is triggered, all
Reader, Session and Channel objects providing access to this secure
element are marked as closed. Calling any method other than close()
on associated readers, sessions, or channels MUST fail with an
SEClosedException error.

Promise<void> close()

This method closes all readers and descendent Session and Channel
objects. When invoked, the user agent MUST run the following steps:

1. Let promise be a newly-created Promise object.
2. Return promise and continue the following steps asynchronously.
3. If the close() method has already been called on this object, then

resolve promise.
4. Let countdown be the number of readers in the readers attribute,

and error an object initially undefined.
5. Invoke close() method on each Reader object in the array returned

by the readers attribute.
6. Let readerpromises be the set of Promise objects returned by these

close() invocations.
7. Set the readers attribute value to null.
8. If countdown is 0, then resolve promise with this

SecureElementManager object.
9. When a readerpromises element is fulfilled, countdown is

decremented. If countdown is 0 and error is undefined, then resolve
promise. If countdown is 0 and error is not undefined, then reject
promise with the error value.

10. When a readerpromises element is rejected, countdown is
decremented. If error is undefined then set it to the rejected value.
If countdown is 0 then reject promise with error value.

L.11. READER INTERFACE

Readers connected to this device are accessible through the Reader interface.
A reader is the connector to a secure element. Given the removable nature of
some secure elements, a reader may or may not have a secure element present.
A reader may have at most one present secure element simultaneously. A
reader MAY for instance be a UICC slot, a USB smart card reader, an NFC
interface, or a mother board slot where a embedded secure element is wired.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 290 of 298

readonly attribute boolean isSEPresent
This attribute MUST return true if a secure element is present in this
reader. It MUST return false otherwise.

readonly attribute DOMString name
This attribute MUST return the name of the reader. This is an arbitrary
name set by the system. It MAY be computed based on reader provided
data.

readonly attribute SecureElementType secureElementType
This attribute MUST return the SecureElementType value best matching
the type of the secure element this reader gives access to. This information
may be useful for applications that target a specific secure element type. It
may also be used to build the application user interface, to represent the
secure element in a realistic way.

readonly attribute ConnectivityType connectivityType
This attribute MUST return the ConnectivityType value matching the
connectivity used by the reader to communicate with the secure element.

Promise<Session> openSession()
This method establishes a communication link with a secure element. There
may be several sessions opened at the same time, hence a session MUST
NOT lock access to the secure element.

Promise<void> close()
This method closes all sessions opened by this reader, and their descendent
Channel objects. Invoking close() method on an already closed reader is
an idempotent operation.

L.12. SECUREELEMENTTYPE ENUM

The SecureElementType enum identifies the type of the secure element a
reader gives access to.

uicc
The secure element is a UICC used by the device to connect to a mobile
network.

smartcard
The secure element is a smart card.

chip
The secure element is a dedicated chip in the device.

sd
The secure element is a SD card, and may be unplugged.

other
For any other secure element type not listed above.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 291 of 298

L.13. CONNECTIVITYTYPE ENUM

The ConnectivityType enum identifies the type of the secure element a reader
gives access to.

embedded
The secure element is physically attached to the device, and cannot be
removed, at least without powering off the device.

plugged
The secure element is plugged to the device, and can be unplugged.

wireless
The secure element is accessed though wireless communication, such as
NFC. It can be disconnected.

L.14. SESSION INTERFACE

A Session represent a connection session to one of the Secure Elements
available on the device. These objects can be used to get a communication
channel with an application hosted by the Secure Element.

readonly attribute Reader reader
This attribute MUST return the reader object from which this session
object was created.

readonly attribute Uint8Array? atr
This attribute MUST return the Answer to Reset provided by the secure
element, or null if the secure element does not provide one.

Promise<Channel> openBasicChannel()

This methods opens a basic channel to communicate with a secure element
application. Once this channel has been opened by an application, it is
considered to be "locked" to other applications: any other call to this
method will fail with SENoChannelException error until this basic channel
is closed. Some secure elements might always deny opening a basic
channel.

If the aid parameter is not null, the underlying implementation of this
operation MUST send to the secure element a SELECT command, as
defined in [[!ISO7816-4]], with following header values:

• CLA = ‘0x00’
• INS = ‘0xA4’
• P1 =’0x04’ (Select by DF name/application identifier)
• P2 =’0x00’ (First or only occurrence)

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 292 of 298

If aid is null, then no SELECT is sent, the channel is opened on the default
selected secure element application.

This method will trigger the Access Control Enforcer to check the
requesting application is authorized to open such channel.

Uint8Array aid
This parameter value MUST either be:

• The complete Application Identifier of the targeted application
on the secure element;

• A partial Application Identifier matching a set of targeted
applications on the secure element, in which case the channel
will be opened on the first matching application;

• null if the channel should be opened on the default application.

Promise<Channel> openLogicalChannel()

This methods opens a logical channel to communicate with a secure
element application. It is up to the secure element to choose which logical
channel will be used. If no more logical channel is available, this method
MUST fail with SENoChannelException error.

If the aid parameter is not null, the underlying implementation of this
operation MUST send to the secure element a SELECT command, as
defined in [[!ISO7816-4]], with following header values:

• CLA = ‘0x01’ to ‘0x03’, ‘0x40 to 0x4F’ (as chosen by the secure
element)

• INS = ‘0xA4’
• P1 =’0x04’ (Select by DF name/application identifier)
• P2 =’0x00’ (First or only occurrence)

If aid is null, then no SELECT is sent, the channel is opened on the default
selected secure element application.

This method will trigger the Access Control Enforcer to check the
requesting application is authorized to open such channel.

Uint8Array aid
This parameter value MUST either be:

• The complete Application Identifier of the targeted application
on the secure element;

• A partial Application Identifier matching a set of targeted
applications on the secure element, in which case the channel
will be opened on the first matching application;

• null if the channel should be opened on the default application.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 293 of 298

Promise<void> close()
Closes the connection session to the Secure Element. This will close any
channels opened by this application with this Secure Element. Invoking
close() method on an already closed session is an idempotent operation.

L.15. CHANNEL INTERFACE

A Channel represents an [[!ISO7816-4]] channel opened to a Secure Element.
It can be either a logical channel or the basic channel. It can be used to send
commands to a Secure Element application.

readonly attribute Session session
This attribute MUST return the session object from which this Channel
object was created.

readonly attribute ChannelType channelType
This attribute MUST return this channel type.

readonly attribute SEResponse? openResponse
This attribute MUST return the secure element's response to the channel
opening operation. It MUST be null if the channel was opened on the
default secure element application (no AID was provided in the open
channel operation).

Promise<SEResponse> selectNext()
Updates the targeted application of this channel to be the next one
matching the partial Application Identifier passed when this channel was
open. Invoking this method MUST fail with an SEInvalidStateException
error if this channel was not open with a partial AID, or with an
SENoApplicationException error if there is no next application matching
that partial AID. In that case the application associated to this channel
is unchanged. If a next application has been found and associated to
this channel, this operation succeeds and returns the secure element's
response. This response value MUST be assigned to the openResponse
attribute.

Promise<SEResponse> transmit()

This method transmits a command to the secure element. The user agent
MUST ensure the synchronisation between all the concurrent calls to this
method: a command MUST NOT be sent to a secure element while a
response is still pending on any channel from this same secure element.

This method will trigger the Access Control Enforcer to check the
requesting application is authorized to send such command on this
channel.

The channel information in the class byte in the APDU command will be
ignored. The system MAY modify the class byte of the command to ensure
the APDU is transported on this channel. To ensure the invoking web

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 294 of 298

application does not exit from the scope of this channel, the user agent
MUST reject the following commands with SEInvalidValueException
error value:

• MANAGE_CHANNEL (INS=0x70)
• SELECT by DF Name (INS=0xA4 and P1=04)

SECommand cmd
The command to send to the secure element application.

Promise<Uint8Array> transmit()

This method behaves exactly as the transmit method above, excepts that
both its parameter and the response are passed as a raw binary data.
Before transmitting the command to the secure element, the
implementation of this method MUST set the logical channel in the class
byte of the command so that it fits the channel allocated to this Channel
object.

This method will trigger the Access Control Enforcer to check the
requesting application is authorized to send such command on this
channel.

Uint8Array cmd
The raw command to send to the secure element application. The
channel information in the class byte of the command (first octet of the
cmd data) will be ignored.

Promise<void> close()
This method closes this session object. If a transmit operation is still
waiting for the secure element response, the user agent must terminate
that asynchronous operation with a closed error status. Invoking close()
method on an already closed channel is an idempotent operation.

L.16. CHANNELTYPE ENUM

The ChannelType enum identifies the type of the secure element channel.

basic
Basic channel, as defined in [[!ISO7816-4]] (channel number 0).

logical
Logical channel, as defined in [[!ISO7816-4]] (channel number > 0).

L.17. SECOMMAND INTERFACE

The SECommand interface represents an APDU command that can be sent to
a secure element.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 295 of 298

attribute octet cla
Class byte

attribute octet ins
Instruction byte

attribute octet p1
First octet of the parameter bytes

attribute octet p2
Second octet of the parameter bytes

attribute Uint8Array? data
Data field bytes, or null if command has no data

attribute unsigned short le
The length of the expected response data, or -1 if application does not
require a specific length

L.18. SERESPONSE INTERFACE

The SEResponse interface represents an APDU response received from a
secure element.

readonly attribute Channel channel
This attribute MUST return the channel object that was used to transmit
the command which triggered this response object.

readonly attribute octet sw1
First octet of response's status word

readonly attribute octet sw2
Second octet of response's status word

readonly attribute Uint8Array data
The response's data field bytes

boolean isStatus()
Utility method to test the status word of an APDU response. This method
MUST return true if the parameters match the value of the response.
octet sw1

Value to compare to the first octet of response's status word, or null if
this first octet may have any value.

octet sw2
Value to compare to the second octet of response's status word, or null
if this second octet may have any value.

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 296 of 298

L.19. ERROR TYPES

In the interfaces defined above, some method return a Promise object. If an
error occurs during the execution of any of these methods, the reject()
method of promise's resolver will be invoked with an error value of one of the
following DOMException subtypes:

SESecurityException
The requested operation does not match the access conditions of the
application, as defined in Access Control section

SEIoException
Communication error

SEInvalidStateException
The target object was not in the proper state to execute the operation

SEInvalidValueException
The method was invoked with an incorrect parameter value

SENoChannelException
Tentative to open a channel failed because no channel is available

SENoApplicationException
The requested application was not found on the secure element

SEClosedException
The operation could not be fulfilled because the target object is closed

SEUnknownException
Internal error, no further details available

L.20. CODE EXAMPLE

The javascript code excerpt below shows how a web application can wait for a
card to be present, and send it an APDU command:

// my application identifier
var myAppId = ...;
// my application command
var myAppCmd = new SECommand(...);

// get secure element manager
var seMgr = navigator.secureElementManager;

// register sepresent event handler
seMgr.onsepresent = function(reader) {

// open session
reader.openSession()
.then(

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 297 of 298

function (session) {
// open a basic channel to my application
return session.openBasicChannel(myAppID);

}

).then(

function (channel) {
// open a basic channel to my application
return channel.transmit(myAppCmd);

}

).then(

function (response) {
if (!response.isStatus(0x90, 0x00) {

// this might be an error
// ...

}
response.channel.session.reader.close();

}

);
};

For simplicity and readability reasons, the code above omits the error handling
that would have to be done in a real application.

L.21. CHANGES

The complete list of changes can be viewed on Github. You can also check the
issues.

L.22. ACKNOWLEDGEMENTS

Thanks to contributors and reviewers...

FP7-611327—HTML5Apps HTML5 for Apps: Closing the Gaps

D1.1 - Standardization Report (M12) Page 298 of 298

https://github.com/opoto/secure-element/commits/gh-pages
https://github.com/opoto/secure-element/issues

	HTML5Apps
	Deliverable D1.1Standardization Report

	Disclaimer
	Table of Contents
	Introduction
	Execution and Security Models
	Status of Work
	Trust and Permissions
	White Paper
	Paris Meeting

	Application Programming Interfaces (APIs)
	Alarm API/Task Scheduler API
	Contacts API
	Messaging API
	Telephony API
	Raw Socket API/TCP UDP Sockets API
	Bluetooth API
	Secure elements API

	Planning Future Work
	Conclusions
	APPENDICES
	Whitepaper: Handling Trust and Permissions in Web Applications
	Introduction
	Native Platforms
	Google's Android Platform
	Apple's iOS Platform
	Microsoft Windows Runtime
	Windows Phone
	Blackberry 10 Native Apps

	Cross Platform Frameworks
	PhoneGap/Apache Cordova
	Adobe AIR

	Web-based Platforms
	Chrome Apps
	Firefox OS
	Ubuntu Web Apps
	Nokia's Cloudberry
	Tizen
	QNX automotive web apps
	GM automotive web apps
	Ford SYNC AppLink
	TV web apps (HbbTV)

	W3C and the Open Web Platform
	Permissions in the Open Web Platform
	What has been done right or wrong?
	Boris Smus on installable hosted web apps
	Robert O'Callahan on Permissions For Web Applications
	Discussions in the System Applications Working Group

	Summary and Future Work
	Some questions for further study

	Acknowledgements
	Appendices
	Telerik
	Appcelerator Titanium
	Xamarin/Mono
	Qt
	Unity 3D/Mobile
	Corona SDK
	Marmalade
	GINGEE
	Codename One
	DragonRad
	RunRev LiveCode
	IBM Worklight
	MoSynch
	RhoMobile
	Whoop
	WAC 2.0
	jQuery
	Sencha Touch
	Dojo Mobile
	Netbiscuits Tactile
	WidgetPad
	webinos

	Minutes from meeting on trust and permissions for Web applications
	Wednesday, 3rd September
	Session 1: Introductions by participants
	Session 2: Logistics and agenda tweaking
	Session 4: Review of approaches used by other platforms (web and native)
	Session 5: What lessons come out of academic studies
	Session 6: Discussion of what considerations are important for the OWP

	Thursday, 4th September
	Session 7: Permissions-related API proposals
	Session 8: Plans for future work
	Next Steps
	Addendum

	Manifest for web apps and bookmarks
	Abstract
	Status of This Document
	Table of Contents
	1. Usage Examples
	1.1 Example manifest
	1.2 Example of linking to manifest
	1.3 Example of using the API
	1.4 Request adding to homescreen

	2. Use cases and requirements
	3. manifest
	3.1 name member
	3.2 dont-share-cookies-and-stuff member
	3.3 url member
	3.4 icons member
	3.5 orientation member
	3.6 mode member
	3.7 Processing the manifest
	3.8 Linking to a manifest
	3.9 Proprietary extensions to the manifest

	4. Launching a standalone web application
	5. Icon object and its members
	5.1 density member
	5.2 width and height members
	5.3 src member
	5.4 type member

	6. Extensions to the Navigator object
	6.1 Attributes
	6.2 Methods

	7. Media type reregistration
	8. Conformance
	A. Acknowledgments
	B. References
	B.1 Normative references
	B.2 Informative references

	The app: URL Scheme
	Abstract
	Status of This Document
	Table of Contents
	1. app: URL
	2. Instance identifier
	2.1 Privacy Considerations

	3. Fetching a resource from a container
	3.1 Security considerations

	4. Conformance
	A. Use Cases
	B. Examples
	C. Acknowledgments
	D. References
	D.1 Normative references
	D.2 Informative references

	Application Lifecycle and Events
	A Service Workers Extension Specification
	Introduction
	Dependencies

	Terminology
	Use Cases and Requirements
	A Single Entry Point to the Application
	Behavior Adaptation at Launch
	System Event-initiated Launch
	Wakeup-initiated Launch

	Termination Sequence
	Application Events

	System Events
	Filtered Events
	Event Registration

	Creating Windows
	Requirements
	APIs Available to Service Workers
	Extensions to the ServiceWorkerGlobalScope interface
	Launching the Application
	Terminating the Application
	Canceling the Termination

	Acknowledgments

	Task Scheduler API
	Abstract
	Table of Contents
	1 Introduction
	2 Conformance
	3 Terminology
	4 Requirements
	5 Task Scheduler API
	5.1 Interface ServiceWorkerRegistration
	5.2 Interface TaskScheduler
	5.3 Interface ScheduledTask

	6 Events
	6.1 Event Handler
	6.2 The TaskEvent Interface
	6.3 Firing task event to service worker

	References
	Acknowledgments

	Contacts Manager API
	Introduction
	Terminology
	Security and privacy considerations
	Navigator Interface
	ContactsManager Interface
	Event handlers
	ContactFindOptions Dictionary
	Enumerations
	ContactField Interface
	ContactFieldInit Dictionary

	ContactTelField Interface
	ContactTelFieldInit Dictionary

	ContactAddress Interface
	ContactAddressInit Dictionary

	The ContactGender enum
	ContactName Interface
	ContactNameInit Dictionary

	Contact Interface
	Steps
	ContactInit Dictionary

	ContactsChangeEvent Interface
	ContactsChangeEventInit Dictionary

	Acknowledgements

	Messaging API
	Introduction
	Terminology
	Security and privacy considerations
	Navigator Interface
	MessagingManager Interface
	Steps

	SmsManager Interface
	Steps

	Event handlers
	SmsSegmentInfo Dictionary
	MmsManager Interface
	Steps

	Event handlers
	MmsSendParameters Dictionary
	SmsMessage Interface
	MmsMessage Interface
	MmsContent Dictionary
	MmsAttachment Dictionary
	MmsDeliveryInfo Dictionary
	Conversation Interface
	MessagingCursor Interface
	ReceivedMessage Interface
	DeliveryReport Interface
	ReadReport Interface
	MessagingEvent Interface
	DeliveryReportEvent Interface
	ReadReportEvent Interface
	ServiceChangeEvent Interface
	MessagingFilter Dictionary
	FilterOptions Dictionary
	Enumerations
	Acknowledgements

	Telephony API
	Introduction
	Dependencies
	Telephony services
	Changing telephony services
	Default Telephony Service
	Telephony Calls
	Call typedef
	Multiparty calls

	Call states
	State changes
	CallState enum
	Receiving calls (inbound states)
	Making calls (outbound states)

	Disconnecting calls
	DisconnectReason enum

	Task Source
	Extensions to Navigator object
	The telephony attribute

	TelephonyManager Interface
	The activeCall attribute
	The calls attribute
	The emergencyNumbers attribute
	The serviceIds attribute
	The defaultServiceId attribute
	The sendTones() method
	Tones
	The stopTone() method
	The startTone() method
	The dial() method
	The changeDefaultService() method

	Event handlers
	DialOptions Dictionary
	The hideCallerId member
	The serviceId member
	ToneOptions Dictionary
	The duration member
	The gap member
	The serviceId member

	TelephonyEvent Interface
	The call attribute

	TelephonyServiceEvent Interface
	The serviceId attribute
	TelephonyServiceEventInit dictionary
	The serviceId member

	CallHandler interface
	The resume() method
	The hold() method
	The disconnect method
	The callId attribute
	The serviceId attribute
	The state attribute
	Event handlers

	TelephonyCall Interface
	The remoteParty attribute
	The conferenceId attribute
	The accept() method
	The redirect() method
	The transfer() method
	The createConference() method
	Event handlers

	ConferenceCall Interface
	The conferenceId attribute
	The calls attribute
	The code>split() method
	Event handlers

	Security and privacy considerations
	Threats
	Mitigations
	User interaction guidelines

	Managing call history
	CallHistoryEntry interface
	The remoteParty attribute
	The serviceId attribute
	The conferenceId attribute
	The startTime attribute
	The duration attribute
	The direction attribute
	The disconnectReason attribute
	The emergency attribute

	CallDirection enum
	Changes
	Acknowledgements

	TCP and UDP Socket API
	Introduction
	Terminology
	Security and privacy considerations
	Interface UDPSocket
	Interface TCPSocket
	Interface TCPServerSocket
	Dictionary UDPMessage
	Dictionary UDPOptions
	Dictionary TCPOptions
	Dictionary TCPServerOptions
	Enums
	SocketReadyState

	Acknowledgements

	Web Bluetooth
	Introduction
	Security and privacy considerations
	Device access is powerful
	Attacks on devices
	Bluetooth device identifiers
	Identifiers for remote Bluetooth devices
	The UA's Bluetooth address
	Device Discovery
	BluetoothDevice
	GATT Interaction
	BluetoothGATTService
	BluetoothGATTCharacteristic
	BluetoothGATTDescriptor
	Object and UUID lookup on navigator.bluetooth
	Events
	Bluetooth Tree
	Event types
	Responding to Notifications and Indications
	Responding to Service Changes
	IDL event handlers
	Error handling
	UUIDs
	Standardized identifiers
	Standard GATT Units
	Standard GATT Services
	Standard GATT Characteristics
	Standard GATT Descriptors
	Interface Wiring

	Secure Element API
	Introduction
	Technical Background
	Use Cases
	Relationship to other W3C APIs
	Dependencies
	Security and privacy considerations
	Secure Element services
	Access Control
	Overall architecture
	Trusted application identifier
	Additional security rules

	Navigator Interface
	SecureElementManager Interface
	Reader Interface
	SecureElementType enum
	ConnectivityType enum
	Session Interface
	Channel Interface
	ChannelType enum
	SECommand Interface
	SEResponse Interface
	Error types
	Code example
	Changes
	Acknowledgements

